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Recall: Hoare - Logic

2 A means to reason over all input and all states: Is there
A Logic for Programs ???

2 We consider the Hoare-Logic, technically
an inference system PL + E + A + Hoare

2 .. and transit to a more automatic variant,
Dijkstra's wp calculus.
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Hoare - Logic: A Proof System for Programs

Example (7):
Proof (bottom up):

- {true} WHILE 2 < 2DO z:==2z+1 {2 <z}

We cant apply the WHILE-rule directly — the only other choice is
the consequence rule. Instantiating the invariant variable P by a
fresh variable I allows us to bring the triple into a shape that we
can apply the WHILE rule later



Hoare - Logic: A Proof System for Programs

Example (7):
Proof (bottom up):

true—1 F{I} WHILEz<2DOz:==2+1{IA-(z<2)} IA-(z<2)—-2<z
- {true} WHILE 2 < 2DO z:==2z+1 {2 <z}

Now we can apply the while rule.



Hoare - Logic: A Proof System for Programs

- Example (7):
Proof (bottom up):

F{INz <2} z:==x+1{[}
true—1 F{I} WHILEz<2DOz:==2+1{IA-(z<2)} IA-(z<2)—-2<z
- {true} WHILE 2 < 2DO z:==2z+1 {2 <z}

To be sure (entering the while loop) we apply again the
consequence rule. For the missing bit, we instantiate /”.



Hoare - Logic: A Proof System for Programs

Example (7):
Proof (bottom up):

INg<2-T1" F{IMfz=—=2+1{I'} T'->I
F{INz <2} z:==x+1{[}
true—1 F{I} WHILEz<2DOz:==24+1{IA-(x<2)} IA-(z<2)-2<z
- {true} WHILE 2 < 2DO z:==2z+1 {2 <z}

Now, in order to make the assignment rule “fit”, we must have
I"=1Txw»x+1].



Hoare - Logic: A Proof System for Programs

= Example (7):
Proof (bottom up):

@ F{I"Y ==z +1{I'} (I'>1

F{INz <2} z:==x+1{[}

@I—{I} WHILE 2 < 2 DO 7 :== 2+ 1 {I A—(z < 2)} @< 2)-@

~—— —_  —

- {true} WHILE 2 < 2DO z:==2z+1 {2 <z}

Additionally, in order that this constitutes a Hoare-Proof, we must
have all the implications.



Hoare - Logic: A Proof System for Programs

Example (7):

- {true} WHILE z < 2 DO z:==z+1 {2 < z}

So, we have a Hoare Proof iff we have a solution to the
following list of constraints:

I'"=I'[x»x+1]
A= true — 1
B=EIA—-(x<2)—2=<x

CEInx<2—=I[xwx+]]
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Hoare - Logic: A Proof System for Programs

- Example (7):

Proof:
I'"=EI'[x»x+1]
A= true —= 1
B=EIA—-(x<2)—2=<x
CEInx<2—=1[xwx+]]
D=I—-=1]

> | must be true, this solves 4, B, D
= we are fairly free for a solution for I,
e.g.x <2 or x <5 would do the trick !
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Hoare - Logic: A Proof System for Programs

2 This proof rises the idea of particular construction
method of Hoare-Proofs, which can be automated:

2 apply bottom-up all rules following the cmd-syntax;
introduce fresh variables for the wholes where necessary

2 apply the consequence rule only at entry
points of loops (this is deterministic!)

4 extract the implications used in these consequence rule
4 fry to find solutions for these implications
(worst case: ask the user ...)
= Essence of all: again, we reduced a program verification
problem fo a constraint resolution problem of formulas ...

= ... provided we have solutions for the invariants.
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Hoare - Logic: A Proof System for Programs

2 Another Example (8) : The integer square-root

int 1 = 0;
int tm = 1; }Eprelude
int sum = 1;
WHILE sum < a DO
1 = 1+1;
tm = tm + 2; }Ebody

sum:= sum + tm;

e

2 Program and Specification in a Hoare Triple

~{a >0} prelude; WHILE sum < a DO body {post}

where post=i2<a A a<(itl)?



Hoare - Logic: A Proof System for Programs

2 We cut it into 2 parts (sequence rule):

2 first: +{a>0} prelude {a>0 A i=0 A tm=1 A sum=1}

. (e,O&\ - {tm=1}sum:==1{B}  + {B}i:==0 {4}
- {true}tm taze{\t;n =1} = {tm =1} sum == 1;i:==0 {A}
I—W\g} tm == 1;(sum:==1;1:==0) {tm=1Asum =1Ai =0}
o
VAN

\‘AQ'WhereA:tmzl/\sumzl/\i:O and where B=tm=1Asum = 1.

2 and:

—{a>0 A A} WHILE sum <a DO body {i2 <a A a <(i+1)2}
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Hoare - Logic: A Proof System for Programs

2 so, for the body, we derive bottom-up:

I —s I[imit1] 1 [imit 1] M = [+ 1{17} [” — I[sumesum-+tm][tmetm+2]

={I’} 1 :=1+1 {I[sumpsum+tm][tm~tm+2]} —{I[sumPpsum+tm][tmrtm~+2]}tm = tm+2 {I[sumrsum-+tm]}

H{I’} 1 :=1+]; tm ;= tm+2 {I[[sum~sum+tm]} {I[sumPpsum-+tm]} sum:=sum+tm {I}

[Asum<a— T H{I’} 1:=1+1; tm := tm+2; sum:=sum+tm {I} [— 1

—{I A sum <a} body {I}
a>0AA—1 ~{I} WHILE sum <a DO body {a <sum A I} a<sum A I — post
F{a>0 A A} WHILE sum <a DO body {post}
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Hoare - Logic: A Proof System for Programs

2 so, for the body, we derive bottom-up:

@ H{I7[ipi+1] 1= I+1{I7} Ql[suml-»sumﬂm][t@

={I’} 1 :=1+1 {I[sumpsum+tm][tm~tm+2]} —{I[sumPpsum+tm][tmrtm~+2]}tm = tm+2 {I[sumrsum-+tm]}

H{I’} 1 :=1+]; tm ;= tm+2 {I[[sum~sum+tm]} {I[sumPpsum-+tm]} sum:=sum+tm {I}

(IAasum<a—1) H{I’} 1:=1+1; tm := tm+2; sum:=sum+tm {I} [— 1

—{I A sum <a} body {I}

@ — {1} WHILE sum < a DO body {a < sum A I} @AI—E

F{a>0 A A} WHILE sum <a DO body {post}
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Hoare - Logic: A Proof System for Programs

2 Qur proof boils down to the constraints:

[” —I[sumesum+tm] [t@ Solution I’ = [[sumrsum+tm][tm~tm+2]

a<sum/\I—®
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Hoare - Logic: A Proof System for Programs

2 Qur proof boils down to the constraints:

@ml-»sumﬂm] [tmetm+2][irit+1] Solution I’ = [[sumrsum+tm][tmetm+2][1=1+1 ]

a<sum/\I—E
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Hoare - Logic: A Proof System for Programs

2 Qur proof boils down to the constraints:

@ —> [[sumPpsum+tm][tmetm+2][1-1+1 “Invariant is preserved in body”
“Invariant initially holds at loop entry”

Recall: ...=a>0 A 1i=0 A tm=1 A sum=1

@ Al —@ “Invariant at loop exit implies post”
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Hoare - Logic: A Proof System for Programs

2 Our proof boils further down to finding the invariant I

1>0

@ — I[sumpsum+tm][tmetm+2][iki+1 tm> 1
sum > 1
(()Aizo A tm=1 A sum=1>

tm=2%*1+1

@A [— P=an a@ sum = Zik_o (2*k + 1)

sum = (1+1)2

a>12

I = sum=(@G+1)2 Aa>2Aatm=2%1+1Atm>1
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Hoare - Logic: A Proof System for Programs

d We check our invariant (1)

[ = sum=(0+1)2 Aa>2Aatm=2%+1Atm>1

@ — I[sumesum-+tm][tmetm-+2][iri+1
@20 A i=0 A tm=1 A sum=1 — [
a<sumAl— 12<an a@
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Hoare - Logic: A Proof System for Programs

J  We check our invariant (constraint 1)

I = sum=(0G0+t1)2 Ara>2Aatm=2*1+1 Atm>1

I A sum <a — [[sumrsum+tm][tmetm+2][i-1+]1 ]

sum=(it1)2 Aa>2Aatm=2*1+1 Atm>1 Asum<a

— sum = (1+1)2 A a>12 A tm=2%1+ 1 A tm > 1[sumPsum-+tm][tm~tm+2][1-1+]1 ]

sum=(it1)2 Aa>2Aatm=2*1+1Atm>1 Asum<a
—> sum+tm+2 = ((1+1)+1)2 A a> (i+1)2 A tm+2 =2*@{+1)+ 1 A tm+2 > 1

sum=(it1)2 Aa>2Aatm=2*1+1 Atm>1 Asum<a
—> (A+1)22*A+1)+H1 = ((+1)+1)2 Aa>(0+1)2 A %1+ D2 =2%G+1) + 1

sum=(1+1)2 Aa>2Aatm=2*i+1 Atm>1 Asum<a
— a>(it1)?

True Invariant preserved
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Hoare - Logic: A Proof System for Programs

4 We check our invariant (constraint 2)

I = sum=(0G0+t1)2 Ara>2Aatm=2*1+1 Atm>1

a>0A1=0Atm=1 A sum=1 — |

a>0Aa>0nA1=0 A tm=1 A sum=1
— sum=(+1)2 Aa>i2Aatm=2%1+1Atm>1

= a>0Aa>0A1=0 A tm=1 A sum=1
— 1=(0+1)2 Aa>02A1=2*0+1A12>1

a>0Aa>0nA1=0 A tm=1 A sum=1
— a>0nA1=1

True

Invariant initially holds
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Hoare - Logic: A Proof System for Programs

2 We check our invariant (constraint 3)

I = sum=(0G0+t1)2 Ara>2Aatm=2*1+1 Atm>1

a<sumAl— 12<anAna<(it+l)?

a<sumAsum=(+1)2 Aa>i2atm=2*1+1Atm>1— 2<ana<(itl)?

a<sumAsum=(+1)2 Aa>2Aatm=2*1+1 Atm>1— a<sum

True

Invariant implies post-condition
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Hoare - Logic: A Proof System for Programs

2 We check termination:

g

We provide a function m that decreases for the
program state (a, i, tm, sum) for any possible

loop traversal (i.e. sum=anxl), i.e.
sum=sanal— m(a,i,tm,sum)>m(a, i+1, tm+2, sum+tm)
Iff such a function m (a measure) exists, the
loop will terminate.
A candidate for m: m(a, i, tm, sum) = a-i

which obviously decreases.

9/8/20
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Hoare - Logic: A Proof System for Programs

2 Now, can we build a

Mechanised Logic for Programs ???

Well, yes | Dijkstra's wp-calculus.
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Hoare - Logic: A Proof System for Programs

2 How can we automate the tedious task ?

> can we make the Hoare-calculus more
deterministic ?

> can we reduce the task of program-verification
to ordinary, standard logic problems ?
(like constraint-solving in test generation ?)
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Hoare - Logic: A Proof System for Programs

2 Hoare revisited (i):

- {P} SKIP {P} | {P[z s E]} x :== E{P}

F{P Acond} c{Q} +{PA-cond}d{Q}
= {P} IF cond THEN c ELSE d{Q}

Q... this part is actually highly deterministic
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Hoare - Logic: A Proof System for Programs

2 Hoare revisited (ii):

- {P} c{Q} F{Q}d{R}
-{P} ¢ d {R}

= {P A cond} ¢ {P}
= {P} WHILE cond DO ¢ {P A —cond}

PoP H{P}emd{Q} Q—Q
- {P} emd {Q)

... this part needs some work, and some new ideas.

(I

9/8/20 B. Wolff - GLA - Deductive Verification



Hoare - Logic: A Proof System for Programs

2 Hoare revisited (ii):
... this part needs some work, and some new ideas.

>~ Note: the sequence rule is deterministic for .basic programs™:

= {tm =1}sum:==1{B} F{B}i:==0{4}
- {true}tm :== 1{tm = 1} = {tm =1} sum :==1;i:==0 {4}
- {true} tm == 1;(sum == 1;i:==0) {tm=1Asum =1 A1 =0}

where A=tm=1Asum=1A7=0 and where B=tm =1A sum = 1.
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Hoare - Logic: A Proof System for Programs

< Hhm, do we actually really need pre- and postconditions?

= {P[|x — E]} x :== E{P}

- {P} ciQ} H1Q} d{R}
- {P} ¢ d {R}

For assignment sequences, if we have the post-condition,
we can compute a pre-condition from it by proceeding

from right to left
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The wp calculus

2 Core Concept: The predicate transformer wp
4 It captures our “strategy” to construct Hoare Proofs
2 It is a recursive function going over elementary cmd’s

4 It calculates from the post-condition P the , weakest liberal precondition™

wp(SKIP, P) = P
wp(x:==E, P) = P[x~E]
wp(c;d , P) = wp(c, wp(d, P))
wp(lF c THEN d ELSE e, P) =
c = wp(d, P) A 'c = wp(e, P)
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The wp calculus

2 Core Concept: The predicate transformer wp

> Example for a basic program:
wp(lF a=0 THEN tm:=1; sum:=1; i:=0 ELSE SKIP, tm=1A sum=1 A i=0)

a=0 = wp(tm:==1; sum:==1; i:==0, tm=1A sum=1 A i=0 A
1(a=0) = wp(SKIP, tm=1A sum=1 A I=0

a=0 — (tm=1A sum=1 A i=0)[tm~1][sum~1][i~0] A
Ta=0 — (tm=1A sum=1 A i=0)
=a=0 —» True A Ta=0 — (tm=1A sum=1 A i=0)

=a<0 — (tm=1A sum=1 A i=0)
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The wp calculus

4 Core Concept: The predicate transformer wp

> Note:

a<0 — (tm=1A sum=1 A |=0)

is the weakest liberal precondition. If ,a>5"

the "usual” post-condition

tm=1A sum=1 A i=0

just remains as a left-over ...
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The wp calculus

3 Core Concept: The predicate transformer wp

So, for the "basic” fragment of the language,
we have a solution.

But can we extend this to while ?

Solution: We annotate cmd’s with the invariants |
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The wp calculus

a2  Basis cmdA: IMP's cmd

> the empty command SKIP
> the assignment X:== (x e V)

= the sequential composition c. ;c

> the conditional IF cond THEN ¢, ELSE c,

2

> the annotated loop WHILE cond DO{l}c

So, the only difference between the classic cmd and annotated
cmd, and cmd is the invariant-annotation in the while-construct.
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The wp calculus

2 Then we can complete the definition for wp by:

wp(WHILE ¢ DO {I} cmd, Q) = |

< ...and infroduce a function vcg .verification condition generator®
vcg(WHILE ¢ DO {I} body, P) =

((IA7c) = P)A -- exit must establish P
((1 A c) = wp(body, I)) A -- | must be preserved in body
vcg(body, 1) -- treating internal WHILE's

veg(c; d, P) = veg(c, wp(d,P)) A veg(d,P)
vcg(lIF b THEN ¢ ELSE d, P) = veg(c, P) A veg(d, P)

veg(_ ,P) =true catchall other options |
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The wp calculus

2 Technically, Hoare-Logic and vcg and wp are connected by the
following theorem:

Theorem: Correctness of vcg_and wp.

Assume the constraints generated by vcg and wp hold:

veg(cmd,Q) A P — wp(cmd, Q)

Then there exists a Hoare-Proof for:

~ {P}cmd {Q}

Proof: By induction over the program structure cmd.
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The wp calculus

.. in other words:

Instead of constructing a formal Hoare proof,
we can just run vcg and wp and prove
the resulting formula.
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The wp calculus

2 Example:

= {True} tm:=1;sum:=1; i:=0 {tm=1 A sum=1 A i=0}

reduces to (by correctness theorem of vcg/wp)
vcg (tm:=1;sum:=1;i:=0, tm=1 A sum=1 A i=0) A
true = wp(tm:=1; sum:=1;i:=0, tm=1 A sum=1 A |=0)
= tm=1 A sum=1 A i=0 [I»0,sum~1,im~1]

=1=1 A 1=1 A 0=0 = True
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The wp calculus

4 Example:

- {True} IF x = 0 THEN x:== -x ELSE SKIP {O = X}

2 ... reduces to (by correctness theorem of vcg/wp)

veg (IFx=0..,0=x) A
true = wp(IF x = 0 THEN x:== -x ELSE SKIP, 0 = x)
X=0—=>wpXi==-X,0=x) A7(x = 0) = wp(SKIP, 0 = x)

X=s0—=20=s-xA"(x=0) > 0=x=True
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The wp calculus

9 Example:
= {True} WHILE x<2 DO {x = 2} x;i==x+1 {2 = x}

< is (by correctness theorem of vcg/wp)

VCg(WHILE x<2 DO{x = 2}..., 2 =X) A
true = wp(WHILE x<2 DO{x = 2}..., 2 = X)

= (XS2A 'X<2) > 2=XA
(X =2 AX<2)) 2> wp(Xi==x+1,Xx=2) A
vcg(x:i==x+1, x = 2)

= True
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Tools following the vcg-approach

> Microsoft Visual-Studio + Spec# + Boogie + Z3
(for a C# like language)

> Microsoft Visual-Studio + VCC + Boogie + Z3
(for a realistic subset of C / X86)

= gwhy + Why + AltErgo
> Frama-C + Why + Z3 / AltErgo (Vanilla C frontend)
> Isabelle/HOL + AutoCorres (Vanilla C frontend)
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Tools: gwhy and Squareroot

I
000 gWhy: a verification conditions viewer

File Configuration Proof

Alt-Ergo

rqrt_i-pl_po_l
Proof obligations 0.9 Statistics

a: int
Hl: 0 <= a

C function sqrt

0 * 0 <= a

Correctness

1. leoop invariant initially holds

2. loop invariant initially holds /*@ axiom square sum :
e \forall int i; i * i + ((2 * i) + 1) ==(i+1) *(i+1)

3. loop invariant initially holds ex/

4. loop invariant initially holds

/*@ requires O<=a
€ ensures \result * \result <= a < (\result+l) * (\result+l)

el

5. assertion

6. loop invariant preserved
7. loop invariant preserved
8. loop invariant preserved
9. variant decreases

10. variant decreases

11. postcondition

12. postcondition

0000 OCOOOOOOT

K1 | |
Timeout| 10 |§|I:I Pretty Printer | |file: Sqrt.c Correctness of C function sqrt S
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Dijkstra's - Calculus: Summary

Verification by Formal Proof

> Substantially improved degree of automation !
Both by methodology and by automated
theorem provers ...

= Still, you have to provide the invariants,
which is the key work | A particular nasty part
are framing conditions

= Tools and Tool-Chains necessary

(but, meanwhile, there are quite a few ...)
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