.0 a L
universite c/ il

PARIS-SACLAY N

L3 Mention Informatique
Parcours Informatique et MIAGE

Génie Logiciel Avancé -
Advanced Software
Engineering
UML with MOAL-Contracts

Burkhart Wolff
wolff@Iri.fr

Recall:

2 MOAL is alogic used to make

UML diagrams more precise

-4 1t comprises

> typed sets, lists, and some base types

= classes and objects from UML class diagrams
> subtyping and casts

> a semantics for path navigation and
associations.

9/9/23 B. Wolff - GLA - Advanced UML

Recall: Object Attributes

4 Objects represent
structured, typed memory

in a state 0. They have
attributes.

: Integer

- . .. m

o
@)

They can have class types.

2 Reminder: In class diagrams, .

|

this situation is represented i :Integer
traditionally by Associations

[V ==

(equivalent)

9/9/23 B. Wolff - GLA - Advanced UML

Syntax and Semantics of Object Attributes

2 Example:

attributes of class type in states o, and o.

pr

9/9/23 B. Wolff - GLA - Advanced UML

Recall Navigation

2 Object assessor functions are
.dereferentiations of pointers in a state

1)

2 Accessor functions of class type are

strict wrt. NULL.

> NULL.d NULL
NULL.a NULL

> Recall that navigation expressions depend
on their underlying state:

bl. d(()'pre) : a(Opre) . d(O‘pre) : Iore)
bl.d(o).a(o).d(o).a(o)=b1 I
(cf. Object Diagram pp 28)

a(o.) =NULL

9/9/23 B. Wolff - GLA - Advanced UML

Recall Object Attributes

2 Object assessor functions are
.dereferentiations of pointers in a state”

2 Accessor functions of class type are

strict wrt. NULL.

> NULL.d NULL
NULL.a NULL

> The o convention allows to write :

old(bl1.d.a.d.a) =NULL
bl.d.a.d.a=b1 N
(cf. Object Diagram pp 28)

9/9/23 B. Wolff - GLA - Advanced UML

Recall Object Attributes

U

Attibutes can be List or

Sets of class types:

24 Reminder: In class diagrams,
this situation is represented

traditionally by Associations

(equivalent)

B C

i : Integer a :List(B)
d: Set(C)

F'Integer dlisty doel) -
' a d

4 TIn analysis-level Class Diagrams, the type

information is still omitted; due to overloading of

VxExX. P (x) etc. this will not hurt ..

9/9/23 B. Wolff - GLA - Advanced UML

Recall Cardinalities vs Invariants

2 Cardinalities in

B .
Associations can i :Integer ;"S{LISt} ioet l_dO

be translated
canonically into
MOCL invariants:

> definition card, = VxEB. |x.d|= 10

>~ definition card, _= Vx€c. 1<|x.a|< 5

9/9/23 B. Wolff - GLA - Advanced UML

Strictness of Collection Attributes

2 Accessor functions are fListy {Set)
defined as follows for

i :Integer 5 d

the case of NULL:

= NULL.d={} -- mapping to the neutral element
> NULL.a =] -- mapping to the neural element.

9/9/23 B. Wolff - GLA - Advanced UML

Syntax and Semantics of Object Attributes

2 Cardinalities in B 1..5{List} {Set}10 C
L. i :Integer |==—
Associations can a d

be translated
canonically into
MOCL invariants:

> definition card, = VxEB. |x.d|= 10

> definition card, = VxEcC. 1<|x.als 5

9/9/23 B. Wolff - GLA - Advanced UML

Operation Contracts

9/9/23 B. Wolff - GLA - Advanced UML

Operation Contracts

4 Many UML diagrams talk over a sequence
of states (hot just individual global states)

<1 This appears for the first B
time in so-called contracts | : Integer
for (Class-model) methods: m(k:Integer) : Integer

<4 The « method » m can be seen as a « transaction »

of a B object transforming the underlying pre-state
o_.in the state « after » m yielding a post-state o.

pr

9/9/23 B. Wolff - GLA - Advanced UML

Pré et post-conditions
(piqué de Delphine |)

: contrat entre |'opération
appelée et son appelant

+ Appelant responsable d'assurer que la pré-condition est vraie

* Implémentation de |'opération appelée responsable d'assurer
la terminaison et la post-condition a la sortie, si la pré-
condition est vérifiée a l'entrée

Si la pré-condition n'est pas vérifiée, aucune garantie sur I'exécu;rion

condition

pré-condition ?

Implémenta

tion

9/9/23 B. Wolff - GLA - Advanced UML

Operations in UML and MOAL

2 Syntactically, contracts are
annotated like this (in MOAL convention):

operation b.withdraw(k):
................. pre: old(b.solde) - k >= 0
----------------- post: b.solde = old(b.solde) - k

Client

solde : Integer

withdraw(k:Integer) : Integer

9/9/23 B. Wolff - GLA - Advanced UML

Operations in UML and MOAL

2 ... or like this (OCL-ish):

context b.withdraw(k):
.......... pre: b.solde@pre - k >= 0
--------------------- post: b.solde = b.solde@pre - k

Client

solde : Integer

withdraw(k:Integer) : Integer

9/9/23 B. Wolff - GLA - Advanced UML

Operations in UML and MOAL Contracts

2 This appears for the first B
time in so-called contracts | : Integer

for (Class-model) methods:

add(k:Integer) : Integer

2 The « method » add can be seen as a « transaction »

of a B object transforming the underlying pre-state
O . iN the state « after » add vyielding a post-state o.

9/9/23 B. Wolff - GLA - Advanced UML

Syntax and Semantics of MOAL Contracts

2 Again: This is the view of a transaction (like in a data-
base), it completely abstracts away intermediate
states or time. (This possible in other models/calculi,
like the Hoare-calculus, though).

9/9/23 B. Wolff - GLA - Advanced UML

Syntax and Semantics of MOAL Contracts

-4 Consequence:

>

The pre-condition is a formula referring to the o and the

method arguments b1, a,, ..., a_only.

the post-condition is only assured if the pre-condition is
satisfied

otherwise the method

...may do anything on the state and the resulft,
may even behave correctly , may non-terminate !

raise an exception
(recommended in Java Programmer Guides
for public methods to increase robustness)

9/9/23

B. Wolff - GLA - Advanced UML

Syntax and Semantics of MOAL Contracts

1 Consequence:

> The post-condition is a formula referring to both
O, and o, the method arguments b1, a,, ..., a, and

the return value captured by the variable result.

> any transition is permitted that satisfies the post-
condition (provided that the pre-condition
is true)

9/9/23 B. Wolff - GLA - Advanced UML

Syntax and Semantics of MOAL Contracts

-4 Consequence:

>

>

>

The semantics of a method call:

b1.m(a1, an)

is thus:
pre _(b1,a,, ..., a) (opre)

post (b1,a,, ..., an,result)(opre,o)

Note that moreover all global class invariants have

to be added for both pre-state O\ e and post-state o !

For a successful transition, the following must hold:

'”V(Opre) A pre_ (b1 ,a1,...,an)(cpre) A post(b1,a,,...,a r)(o

pre’

o) A Inv(o)

9/9/23

B. Wolff - GLA - Advanced UML

Syntax and Semantics of MOAL Contracts

2 Example:

o’
.
.
o
Py

Client

K3
.
.
.
.
.
.
S
S
S
S
.
o
.

solde : Integer

withdraw(k:Integer)

class invariant:
c.solde >= 0 for all clients c.

operation c.withdraw(k) : =

fpre: k >= 0 A old(c.solde) - k>=0
‘| post: c.solde = old(c.solde) - k

> definition inv_ . __ (0)=
Vc€Client(o). 0<c.solde(o)
~ definition pre . . (C, k)(0)=
ceEClient(o) A 05k A 0<c.solde(o)-k
= definition post . (C, kresult)(c,..0)=
Cc.solde(o)=c. solde(apre)-k
9/9/23

B. Wolff - GLA - Advanced UML

Syntax and Semantics of MOAL Contracts

2 Notation:

= TInorder to relax notation, we will refine
the o convention by the old-notation:

= Client(o) just becomes Client
> c.solde(o) just becomes c.solde
> Client(opre) becomes old (Client)

> c.solde(o becomes old (c.solde)

pre)

9/9/23 B. Wolff - GLA - Advanced UML

Syntax and Semantics of MOAL Contracts

. . class invariant:
- Example (r'evnsed). c.solde >= 0 for all clients c.
Clent
Joperation c.withdraw(k) :
SOIde : Integer .,.:":pre: k >= 0 A old(c.solde) - k>=0
withdraw(k:Integer) ¢ |post: c.solde = old(c.solde) - k
= definition 1inv_ . VCEC%\{@QE 0<c.solde
= definition pre_ thd F‘
cEClient < c.solde -k

> definiti‘@‘lﬂ\‘stmthdr (c k result)_
V.J,\.Solde = old(c.solde)-k

9/9/23 B. Wolff - GLA - Advanced UML

Syntax and Semantics of MOAL Contracts

2 Alternative Example:

class invariant:
“““““““ c.solde >= 0 for all clients c.

Client

o
.
.
.
-
S
S
S
o
.
.

solde : Integer

operation c.withdraw(k) : &
jpre: true

/| post:

withdraw(k:Integer) : {ok,nok} |ifk >= 0 A old(c.solde) - k>=0

then c.solde = old(c.solde) - k
A result = ok

else result = nok

What are the differences
between these contracts?

9/9/23

B. Wolff - GLA - Advanced UML

Syntax and Semantics of MOAL Contracts

J

Answer:

g

ten c.withdraw(k) :
<pre: true)

i/fk)/{t)’/\ old

then c.solde = old(c.solde) -

A result = ok
M

(c.solde)=+==0

(S

“withdraw” is now always
defined; in case of illegal
arguments it yields an error

9/9/23

B. Wolff - GLA - Advanced UML

Semantics of MOAL Contracts

2 Two predicates are helpful when defining

contracts. They exceptionally refer to both (o__,0)

pre’
= isNew (p) (opre,o) is true only if object p of class C
does not exist in e but exists in o

> modifiesOnIy(S)(opre,o) is only true iff
- all objects in O, are except those in S identical in o

- all objects exist either in o are
or are contained in S

With this predicate, one can express : ,,and nothing
else changes". It is also called «framing
condition»

9/9/23 B. Wolff - GLA - Advanced UML

A Revision of the Example: Bank

Opening a bank account. Constraints:

3

J

J

there is a blacklist

no more overdraft than 200 EUR

there is a present of 15 euros in the initial account

account numbers must be distinct.

Banque

interdits

Personne

ouvrirCompte (in nomC:5String): Integer

9/9/2

*

Compte

lesComptes

no: Integer
solde: Real

*

nom: String

titulaire | 1

A Revision of the Example: Bank (2)

definition pre (b:Banque, nomC:String)=

ouvrirCompte

Vp € Personne. p.nom # nomC

definition post (b:Banque,nomC:String, r:Integer) =

ouvrirCompte

|{p € Personne | p.nom = nomC}| =1

Now We casrundenstand-thecemplexrlooking
contraéfoTart HI it forthe Batik: - 1

AN VceComp c.titulaire.nom = nomC — c.solde = 15

AN c.isNew ()
A b.lesComptes=0ld(b.lesComptes)U

{c€ECompte | c.titulaire.nom = nomC}

A b.interdits=o0ld(b.interdits)U
{p € Personne | p.nom = nomC}

A modifiesOnly ({b}U{c€Compte c.titulaire.nom = nomC}
U {p € Personne | p.nom = nomC})

9/9/23 B. Wolff - GLA - Advanced UML

Operations in UML and MOAL

2 A more complete example at a glance:
(still ignoring framing conditions)

b.deposit’(k) operation:
post: k >= 0 — b.solde = old(b.solde) + k

Apost: if k >= 0 then result = ok
3 else result = ok

Client

solde : Integer A

b.withdraw(k) operation:

deposit(k:Integer) : {ok,Nok} |.{*" Vi < olato.solce) -
withdraw(k:Integer) : {ok,nok/} |Pest k> O thenresult = ok
solde() : Integer

aa,
a,
“eay
ea,
"aa,
aay

"ea,
Taa,
"aa,
aa,
T
ey

b.solde() query:
r post: result = old(b.solde)

9/9/23 B. Wolff - GLA - Advanced UML

Operations in UML and MOAL

2 Abstract Concurrent Test Scenario:

cl c2 bank
oF solde() R
solde() >
esult=al
result=a2 .
o <
2 withdraw(b1) q
withdraw(b2)
< result=0k
O, lq result=0k
solde() >
l result=d1
Oy

Assume that this scenario was valid, i.e. all conditions were
satisfied: what do we know in o, ?

Operations in UML and MOAL

2 Abstract Concurrent Test Scenario:

cl c2 bank
solde() o
solde()
O < resiilt=a1 g
1 < result=a2
withdraw(b1) >
O, withdraw(b2)
< result=0oK
«—Tesult=0K |
G deposit(c) o
3 J result=ok
solde() o
O
4 b result=dl

Any instance of bl and al is a test ! This is a ,,Test Schema" !
Note: bl can be chosen dynamically during the test !

Summary

9 MOAL makes the UML to a
“formal” specification language

2 MOAL can be used to annotate Class Models,
Sequence Diagrams and State Machines

2 Working out, making explicit the constraints of
these Diagrams is an important technique in the
transition from

4 Cahier de charge to Analysis

2 From Analysis to Designs and Tests.

9/9/23 B. Wolff - GLA - Advanced UML

