
L3 Mention Informatique

Parcours Informatique et MIAGE

Génie Logiciel Avancé - 
Advanced Software

Engineering

UML with MOAL-Contracts

Burkhart Wolff

wolff@lri.fr

9/9/23 B. Wolff - GLA - Advanced UML

Recall:

❑ MOAL is a logic used to make  
UML diagrams more precise

❑ it comprises

➢ typed sets, lists, and some base types

➢ classes and objects from UML class diagrams

➢ subtyping and casts

➢ a semantics for path navigation and  

associations. 

9/9/23 B. Wolff - GLA - Advanced UML

Recall: Object Attributes

❑ Objects represent  
structured, typed memory 
in a state σ. They have 
attributes.  
 
They can have class types. 

❑ Reminder: In class diagrams, 
this situation is represented 
traditionally by Associations 
(equivalent) 
 

 B 
 i : Integer 
 d: C

 C 
 a : B  

 B 
 i :Integer   C 

  
1 
a

1 
d

9/9/23 B. Wolff - GLA - Advanced UML

Syntax and Semantics of Object Attributes

❑ Example:  
attributes of class type in states σpre and σ.

 σpre

b1 
i=1;	  
d=c1

b2 
i=4;	  
d=c1

 c1 
 a=NULL	  

 σ

b1 
i=1;	  
d=c1

b2 
i=4;	  
d=c2

 c1 
 a=b1	  

 c2 
 a=b2	  

9/9/23 B. Wolff - GLA - Advanced UML

Recall Navigation

❑ Object assessor functions are 
„dereferentiations of pointers in a state“

❑ Accessor functions of class type are  
strict wrt. NULL.

➢ NULL.d = NULL 

NULL.a = NULL 
 

➢ Recall that navigation expressions depend  
on their underlying state: 
 b1.d(σpre).a(σpre).d(σpre).a(σpre) = NULL 
 b1.d(σ).a(σ).d(σ).a(σ) = b1 !!! 
 (cf. Object Diagram pp 28)

9/9/23 B. Wolff - GLA - Advanced UML

Recall Object Attributes

❑ Object assessor functions are 
„dereferentiations of pointers in a state“

❑ Accessor functions of class type are  
strict wrt. NULL.

➢ NULL.d = NULL 

NULL.a = NULL 
 

➢ The σ convention allows to write : 
  
 old(b1.d.a.d.a) = NULL 
 b1.d.a.d.a = b1 !!! 
 (cf. Object Diagram pp 28)

9/9/23 B. Wolff - GLA - Advanced UML

Recall Object Attributes

❑ Attibutes can be List or  
Sets of class types: 

❑ Reminder: In class diagrams, 
this situation is represented 
traditionally by Associations 
(equivalent) 

❑ In analysis-level Class Diagrams, the type  
information is still omitted; due to overloading of  
∀x∈X. P(x) etc. this will not hurt …

 B 
 i : Integer  
 d: Set(C)

C 
a :List(B)

B 
i :Integer  

 C 
  

{List} 
a

{Set} 
 d

9/9/23 B. Wolff - GLA - Advanced UML

❑ Cardinalities in  
Associations can  
be translated  
canonically into  
MOCL invariants: 

➢ definition card
B.d

≡ ∀x∈B. |x.d|= 10  

➢ definition card
C.a

≡ ∀x∈C. 1≤|x.a|≤ 5 

Recall Cardinalities vs Invariants

 B 
 i :Integer  

 C 
  

1..5{List} 
a

{Set}10 
 d

9/9/23 B. Wolff - GLA - Advanced UML

Strictness of Collection Attributes

❑ Accessor functions are  
defined as follows for 
the case of NULL: 

➢ NULL.d = {} -- mapping to the neutral element

➢ NULL.a = []	 -- mapping to the neural element. 

 B 

i :Integer  

 C 
  {List} 

a
{Set} 
 d

9/9/23 B. Wolff - GLA - Advanced UML

Syntax and Semantics of Object Attributes

❑ Cardinalities in  
Associations can  
be translated  
canonically into  
MOCL invariants: 

➢ definition card
B.d

≡ ∀x∈B. |x.d|= 10  

➢ definition card
C.a

≡ ∀x∈C. 1≤|x.a|≤ 5 

 B 
 i :Integer  

 C 
  

1..5{List} 
a

{Set}10 
 d

9/9/23 B. Wolff - GLA - Advanced UML

 
 
 Operation Contracts

9/9/23 B. Wolff - GLA - Advanced UML

Operation Contracts

❑ Many UML diagrams talk over a sequence 
of states (not just individual global states)

❑ This appears for the first  
time in so-called contracts  
for (Class-model) methods:

❑ The « method » m can be seen as a « transaction » 

of a B object transforming the underlying pre-state 
σpre in the state « after » m yielding a post-state σ. 

 b.m (k)

 B 
 i : Integer 

 m(k:Integer) : Integer

 σpre

σ

9/9/23 B. Wolff - GLA - Advanced UML

Pré et post-conditions  
(piqué de Delphine !)

Principe de la conception par contrats : contrat entre l'opération
appelée et son appelant

● Appelant responsable d'assurer que la pré-condition est vraie

● Implémentation de l'opération appelée responsable d'assurer

la terminaison et la post-condition à la sortie, si la pré-
condition est vérifiée à l'entrée 

Si la pré-condition n'est pas vérifiée, aucune garantie sur l'exécution
de l'opération

Implémenta
tion

☑

☒

post-

condition

?

pré-condition ?

	

9/9/23 B. Wolff - GLA - Advanced UML

Operations in UML and MOAL

❑ Syntactically, contracts are 
annotated like this (in MOAL convention): 
 
  

 Client 
 solde : Integer 

 withdraw(k:Integer) : Integer

operation b.withdraw(k):  
pre: old(b.solde) - k >= 0
post: b.solde = old(b.solde) - k

9/9/23 B. Wolff - GLA - Advanced UML

Operations in UML and MOAL

❑ ... or like this (OCL-ish): 
 
  

 Client 
 solde : Integer 

 withdraw(k:Integer) : Integer

context b.withdraw(k):  
pre: b.solde@pre - k >= 0
post: b.solde = b.solde@pre - k

9/9/23 B. Wolff - GLA - Advanced UML

Operations in UML and MOAL Contracts

❑ This appears for the first  
time in so-called contracts  
for (Class-model) methods: 
 

❑ The « method » add can be seen as a « transaction » 
of a B object transforming the underlying pre-state 
σpre in the state « after » add yielding a post-state σ.  

  

 B 
 i : Integer 

 add(k:Integer) : Integer

9/9/23 B. Wolff - GLA - Advanced UML

Syntax and Semantics of MOAL Contracts

❑ Again: This is the view of a transaction (like in a data-
base), it completely abstracts away intermediate
states or time. (This possible in other models/calculi,
like the Hoare-calculus, though).

 
 

 σpre
 σ  

 
 
 
b1 
i=2 
d=c1 
 
  b2 

i=4; 
d=c1

 
 
 c1 
 a=NULL	  

b1 
i=1; 
d=c1

b2 
i=4; 
d=c

 c1 
 a=b1 
  

 
 c2 
a=b2 
 
 
	  

9/9/23 B. Wolff - GLA - Advanced UML

Syntax and Semantics of MOAL Contracts

❑ Consequence:

➢ The pre-condition is a formula referring to the σpre and the

method arguments b1, a1, ..., an only.

➢ the post-condition is only assured if the pre-condition is
satisfied

➢ otherwise the method

□ ...may do anything on the state and the result, 

may even behave correctly , may non-terminate !

□ raise an exception 

(recommended in Java Programmer Guides 
 for public methods to increase robustness)

9/9/23 B. Wolff - GLA - Advanced UML

Syntax and Semantics of MOAL Contracts

❑ Consequence:

➢ The post-condition is a formula referring to both  

σpre and σ, the method arguments b1, a1, ..., an and 

the return value captured by the variable result. 

➢ any transition is permitted that satisfies the post-
condition (provided that the pre-condition  
is true)

9/9/23 B. Wolff - GLA - Advanced UML

Syntax and Semantics of MOAL Contracts

❑ Consequence:

➢ The semantics of a method call:  

		 	 b1.m(a1, ..., an) 

is thus: 
	 prem(b1,a1, ..., an) (σpre)  

 ⟶  
 postm(b1,a1, ..., an,result)(σpre,σ)

➢ Note that moreover all global class invariants have  
to be added for both pre-state σpre and post-state σ !

➢ For a successful transition, the following must hold:  
 
Inv(σpre) ∧ prem(b1,a1,...,an)(σpre) ∧ post(b1,a1,…,an,r)(σpre,σ) ∧ Inv(σ)

9/9/23 B. Wolff - GLA - Advanced UML

❑ Example: 

 
 

➢ definition inv
Client

(σ) ≡ 

 ∀c∈Client(σ). 0≤c.solde(σ)

➢ definition pre

withdraw
(c, k)(σ) ≡  

 c∈Client(σ) ∧ 0≤k ∧ 0≤c.solde(σ)-k

➢ definition post

withdraw
(c, k,result)(σpre,σ) ≡ 

 c.solde(σ)=c.solde(σpre)-k  

Syntax and Semantics of MOAL Contracts

 Client 
 solde : Integer 

 withdraw(k:Integer)

operation c.withdraw(k) :  
pre: k >= 0 ∧ old(c.solde) - k>=0
post: c.solde = old(c.solde) - k

 class invariant:  
 c.solde >= 0 for all clients c.

9/9/23 B. Wolff - GLA - Advanced UML

Syntax and Semantics of MOAL Contracts

❑ Notation:

➢ In order to relax notation, we will refine 

the σ convention by the old-notation: 

➢ Client(σ) just becomes Client

➢ c.solde(σ) just becomes c.solde

➢ Client(σpre) becomes old(Client)

➢ c.solde(σpre) becomes old(c.solde) 

9/9/23 B. Wolff - GLA - Advanced UML

Syntax and Semantics of MOAL Contracts

❑ Example (revised):

 
 
 

➢ definition inv
Client ≡ ∀c∈Client. 0≤c.solde

➢ definition pre
withdraw

(c, k) ≡  
 c∈Client ∧ 0≤k ∧ 0 ≤ c.solde - k

➢ definition post
withdraw

(c, k, result) ≡ 
	 c.solde = old(c.solde)-k  
  

 Client 
 solde : Integer 
 withdraw(k:Integer)

class invariant:
c.solde >= 0 for all clients c.

operation c.withdraw(k) :  
pre: k >= 0 ∧ old(c.solde) - k>=0
post: c.solde = old(c.solde) - k

MOAL σ
 convention !

9/9/23 B. Wolff - GLA - Advanced UML

Syntax and Semantics of MOAL Contracts

❑ Alternative Example:

 
 
 

 Client 
 solde : Integer 

 withdraw(k:Integer) : {ok,nok}

class invariant:
c.solde >= 0 for all clients c.

operation c.withdraw(k) :  
pre: true
post:  
 if k >= 0 ∧ old(c.solde) - k>=0  
 then c.solde = old(c.solde) - k 
 ∧ result = ok

else result = nok

What are the differences  
between these contracts?

9/9/23 B. Wolff - GLA - Advanced UML

❑ Answer:

 
 
 

Syntax and Semantics of MOAL Contracts

operation c.withdraw(k) :  
pre: true
post:  
 if k >= 0 ∧ old(c.solde) - k>=0  
 then c.solde = old(c.solde) - k 
 ∧ result = ok

else result = nok

“withdraw” is now always
defined; in case of illegal
arguments it yields an error

9/9/23 B. Wolff - GLA - Advanced UML

Semantics of MOAL Contracts

❑ Two predicates are helpful when defining  
contracts. They exceptionally refer to both (σpre,σ)

➢ isNew(p)(σpre,σ) is true only if object p of class C  
 does not exist in σpre but exists in σ 

➢ modifiesOnly(S)(σpre,σ) is only true iff

□ all objects in σpre are except those in S identical in σ
□ all objects exist either in σ are  

or are contained in S  

With this predicate, one can express : „and nothing
else changes“. It is also called «framing
condition»

9/9/23 B. Wolff - GLA - Advanced UMLB. Wolff - GLA - UML/MOAL

A Revision of the Example: Bank

Opening a bank account. Constraints:

❑ there is a blacklist

❑ no more overdraft than 200 EUR

❑ there is a present of 15 euros in the initial account

❑ account numbers must be distinct.

9/9/23 B. Wolff - GLA - Advanced UML

A Revision of the Example: Bank (2)

definition preouvrirCompte(b:Banque, nomC:String)≡ 
	 	 ∀p ∈ Personne. p.nom ≠ nomC

definition postouvrirCompte(b:Banque,nomC:String,r:Integer)≡

 |{p ∈ Personne | p.nom = nomC}| = 1

 ∧ ∀p ∈ Personne. p.nom = nomC ⟶ isNew(p)

 ∧ |{c∈Compte | c.titulaire.nom = nomC}| = 1 
 ∧ ∀c∈Compte. c.titulaire.nom = nomC ⟶ c.solde = 15 
 ∧ c.isNew() 
 ∧ b.lesComptes=old(b.lesComptes)∪ 
 {c∈Compte | c.titulaire.nom = nomC}

 ∧ b.interdits=old(b.interdits)∪ 
 {p ∈ Personne | p.nom = nomC} 
 ∧ modifiesOnly({b}∪{c∈Compte c.titulaire.nom = nomC} 
 ∪ {p ∈ Personne | p.nom = nomC})

Now we can understand the complex looking  
contract of part III intro for the Bank:

9/9/23 B. Wolff - GLA - Advanced UML

Operations in UML and MOAL

❑ A more complete example at a glance: 
(still ignoring framing conditions) 
 
  

 Client 
 solde : Integer 
 deposit(k:Integer) : {ok,nok} 
 withdraw(k:Integer) : {ok,nok}  
 solde() : Integer

b.withdraw(k) operation:  
post: old(b.solde) - k >= 0  
 ⟶ b.solde = old(b.solde) - k  
post: if k >= 0 then result = ok 

b.deposit’(k) operation:  
post: k >= 0 ⟶ b.solde = old(b.solde) + k 
post: if k >= 0 then result = ok 
 else result = ok

b.solde() query:  
post: result = old(b.solde)

9/9/23 B. Wolff - GLA - Advanced UML

Operations in UML and MOAL

❑ Abstract Concurrent Test Scenario: 
 
  

result=d1

withdraw(b1)

result=ok

withdraw(b2)
result=ok

solde()

solde()
result=a1result=a2

solde()
c1 c2 bank

σ1

σ3

σ4

σ2

assert c1.solde(σ4) = a2-b1 ∧ b1 ≥ 0 ∧ a2 ≥ b1
Assume that this scenario was valid, i.e. all conditions were

satisfied: what do we know in σ4 ?

9/9/23 B. Wolff - GLA - Advanced UMLB. Wolff - GLA - UML/MOAL

Operations in UML and MOAL

Any instance of b1 and a1 is a test ! This is a „Test Schema“ ! 
Note: b1 can be chosen dynamically during the test !

❑ Abstract Concurrent Test Scenario: 
 
  

c1 c2 bank

solde()

result=d1

withdraw(b1)

result=ok
withdraw(b2)

result=ok
deposit(c)
result=ok

solde()
result=a1

solde()

result=a2σ1

σ3

σ4

σ2

9/9/23 B. Wolff - GLA - Advanced UML

Summary

❑ MOAL makes the UML to a  
“formal” specification language

❑ MOAL can be used to annotate Class Models, 
Sequence Diagrams and State Machines

❑ Working out, making explicit the constraints of  
these Diagrams is an important technique in the 
transition from

❑ Cahier de charge to Analysis

❑ From Analysis to Designs and Tests.

