
L3 Mention Informatique

Parcours Informatique et MIAGE

Génie Logiciel Avancé - 
Advanced Software

Engineering

Annotating UML with MOAL

Burkhart Wolff

wolff@lri.fr

9/8/20 B. Wolff - GLA - Advanced UML

Plan of the Chapter

❑ Syntax & Semantics of our own language 
 
	 	 MOAL 

➢ mathematical

➢ object-oriented

➢ UML-annotation

➢ language 

 
(conceived as the „essence“ of annotation  
 languages like OCL, JML, Spec#, ACSL, ...)

9/8/20 B. Wolff - GLA - Advanced UML

Plan of the Chapter

❑ Concepts of MOAL

➢ Basis: Logic and Set-theory

➢ MOAL is a Typed Language

➢ Basic Types, Sets, Pairs and Lists

➢ Object Types from UML

➢ Navigation along UML attributes and associations 

	 	 	 	 	 (Idea from OCL and JML)

❑ Purpose :

➢ Class Invariants

➢ Method Contracts with Pre- and Post-Conditions

➢ Annotated Sequence Diagrams for Scenarios, . . .

9/8/20 B. Wolff - GLA - Advanced UML

Plan of the Chapter

❑ Ultimate Goal:  
Specify system components to improve 
analysis, design, test and verification 
activities 

❑ . . . understanding how some analysis tools work . . . 

❑ . . . understanding key concepts such as class 
invariants and contracts for analysis and design

9/8/20 B. Wolff - GLA - Advanced UML

Motivation: Why Logical Annotations

❑ More precision needed 
(like JML, VCC) that constrains an underlying state σ

 
 
 

Compteur 

id:Integer

 x.id must be larger 0  
(for any object x of Class Compteur)

9/8/20 B. Wolff - GLA - Advanced UML

Motivation: Why Logical Annotations

❑ More precision needed 
(like JML, VCC) that constrains an underlying state σ

 
 
 

Compteur 

id:Integer

 ∀x ∈ Compteur(σ). x.id(σ) > 0

9/8/20 B. Wolff - GLA - Advanced UML

Motivation: Why Logical Annotations

❑ More precision needed 
(like JML, VCC) that constrains an underlying state σ

 
 
 

Compteur 

id:Integer

 ∀x ∈ Compteur(σ). x.id(σ) > 0

9/8/20 B. Wolff - GLA - Advanced UML

Motivation: Why Logical Annotations

❑ More precision needed 
(like JML, VCC) that constrains an underlying state σ

 
 
 
 
 
 
 
... by abbreviation convention if no confusion arises.

Compteur 

id:Integer

 ∀x ∈ Compteur. x.id > 0

9/8/20 B. Wolff - GLA - Advanced UML

Motivation: Why Logical Annotations

❑ More precision needed 
(like JML, VCC) that constrains an underlying state σ

 
 
 
 
 
 
 
... or as mathematical definition in a separate  
 document or text ...

Compteur 

id:Integer

definition invCompteur(σ)≡ ∀x ∈ Compteur(σ).  
 x.id(σ) > 0

definition invCompteur ≡ ∀x ∈ Compteur. x.id > 0

... or by convention

9/8/20 B. Wolff - GLA - Advanced UMLB. Wolff - GLA - UML/MOAL

A first Glance to an Example: Bank

Opening a bank account. Constraints:

❑ there is a blacklist

❑ no more overdraft than 200 EUR

❑ there is a present of 15 euros in the initial account

❑ account numbers must be distinct.

9/8/20 B. Wolff - GLA - Advanced UML

A first Glance to an Example: Bank (2)

definition unique ≡ isUnique(.no)(Compte)

definition noOverdraft ≡ ∀c ∈ Compte. c.id ≥ -200 

definition pre
ouvrirCompte

(b:Banque, nomC:String)≡ 
	 	 ∀p ∈ Personne. p.nom ≠ nomC  

definition post
ouvrirCompte

(b:Banque,nomC:String,r::Integer)≡

 |{p ∈ Personne | p.nom = nomC ∧ p.isNew()}| = 1

 ∧ |{c∈Compte | c.titulaire.nom = nomC}| = 1 

∧ ∀c∈Compte. c.titulaire.nom = nomC ⟶ c.solde = 15 
 ∧ isNew(c) 

9/8/20 B. Wolff - GLA - Advanced UML

MOAL: a specification langage?

❑ In the following, we will discuss the  
 
MOAL Language in more detail ...

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of MOAL

❑ The usual logical language:  

➢ True, False

➢ negation : ¬ E,

➢ or: E ∨ E', and: E ∧ E', implies: E ⟶ E'

➢ E = E', E ≠ E',

➢ if C then E else E' endif

➢ let x = E in E’ 

➢ Quantifiers on sets and lists: 
 
∀x ∈ Set. P(x) 	 	 	 ∃x ∈ Set. P(x)

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of MOAL

❑ MOAL is (like OCL or JML) a typed language.  

➢ Basic Types: 
Boolean, Integer, Real, String

➢ Pairs: X × Y 	

➢ Lists: List(X)

➢ Sets: Set(X)

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of MOAL

❑ The arithmetic core language.  
expressions of type Integer or Real: 

➢ 1,2,3 ... resp. 1.0, 2.3, pi. 

➢ - E, E + E',  

➢ E * E', E / E', 

➢ abs(E), E div E’, E mod E’... 

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of MOAL

❑ The expressions of type String: 

➢ S concat S’  

➢ size(S) 

➢ substring(i,j,S) 

➢ 'Hello'

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of MOAL Sets

➢ | S |		 	 size as Integer

➢ isUnique(f)(S) ≡ ∀x,y ∈ S. f(x)=f(y)⟶ x=y	

➢ {}, {a,b,c}	 empty and finite sets

➢ e∈S, e∉S	 is element, not element

➢ S⊆ S’		 is subset

➢ {x ∈ S | P(x)} filter

➢ S ∪ S’,S ∩ S’ union , intersect 

 between sets of same type

➢ Integer, Real, String ... 
	 	 	 	 are symbols for the set  
		 	 	 of all Integers,Reals, ...

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of MOAL Pairs

➢ (X,Y)		 	 pairing

➢ fst(X,Y) = X 	 projection

➢ snd(X,Y) = Y	 projection

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of MOAL Lists

Lists S have the following operations:

➢ x ∈ L		 -- is element (overload!)

➢ |S|	 	 -- length as Integer

➢ head(L),last(L)

➢ nth(L,i)	 -- for i between 0 et |S|-1

➢ L@L’	 	 	 -- concatenate

➢ e#S	 	 	 -- append at the beginning

➢ ∀x ∈ List. P(x) 	 -- quantifiers : 	

➢ [x∈L | P(x)]	 -- filter

➢ Finally, denotations of lists: [1,2,3], ...

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of Objects

❑ Objects and Classes follow 
the semantics of UML

➢ inheritance / subtyping

➢ casting

➢ objects have an id

➢ NULL is a possible  

value in each class-type

➢ for any class A, we assume a function:  

	 	 A(σ)  
which returns the set of objects of class A  

in state σ (the « instances » in σ).

 A 
  

 B 
  

C 
  

D 
  

 F 
  

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of Objects

❑ Objects and Classes follow 
the semantics of UML

 

Recall that we will drop 
the index (σ) whenever 
it is clear from the context 

 A 
  

 B 
  

C 
  

D 
  

 F 
  

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of Objects

❑ As in all typed object-oriented languages 
casting allows for converting objects.

❑ Objects have two types:

➢ the « apparent type » 

(also called static type)

➢ the « actual type »

(the type in which an  
 object was created)

➢ casting changes the apparent type 
along the class hierarchy, but  
not the actual type

 A 
  

 B 
  

C 
  

D 
  

 F 
  

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of Objects

➢ Assume the creation of objects 
 a in class A,b in class B, 
 c in class C,d in class D,

➢ Then casting:  
 
⟨F⟩b is illtyped 
 
⟨A⟩b has apparent type A, 
 but actual type B 
 
⟨A⟩d has apparent type A, 
 but actual type D 

 A 
  

 B 
  

C 
  

D 
  

 F 
  

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of OCL / UML

➢ We will also apply cast-operators 
to an entire set: So

 
⟨A⟩B(σ) (or just: ⟨A⟩B) 
is the set of instances 
of B casted to A. 
 
We have: 
	 ⟨A⟩B ∪ ⟨A⟩C ⊆ A  
but: 
 ⟨A⟩B ∩ ⟨A⟩C = {}  
and also: ⟨A⟩D ⊆ A (for all σ) 

 A 
  

 B 
  

C 
  

D 
  

 F 
  

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of Objects

❑ Instance sets can be used 
to determine the actual type 
of an object: 
 
	 x ∈ B 
 

corresponds to Java’s 
instanceof or OCL’s  
isKindOf. Note that 
casting does NOT change  
the actual type: 
	 	 	 ⟨A⟩b ∈ B, and ⟨B⟩⟨A⟩b = b !!!

 A 
  

 B 
  

C 
  

D 
  

 F 
  

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of Objects

❑ Summary:

➢ there is the concept of actual and apparent type 

(anywhere outside of Java: dynamic and static type)

➢ type tests check the former

➢ type casts influence the latter,

but not the former

➢ up-casts possible

➢ down-casts invalid

➢ consequence: 

up-down casts are identities.

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of Object Attributes

❑ Objects represent  
structured, typed memory 
in a state σ. They have 
attributes.  
 
They can have class types. 

❑ Reminder: In class diagrams, 
this situation is represented 
traditionally by Aggregations 
(somewhat sloppily: Associations) 
 

 B 
 i :Integer  

 C 
  

1 
a

1 
d

 B 
 i : Integer 
 d: C

 C 
 a : B  

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of Object Attributes

❑ Example:  
attributes of class type in states σ' and σ.

 σpre

b1 
i=1;	  
d=c1

b2 
i=4;	  
d=c1

 c1 
 a=NULL	  

 σ

b1 
i=1;	  
d=c1

b2 
i=4;	  
d=c

 c1 
 a=b1	  

 c2 
 a=b2	  

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of Object Attributes

❑ each attribute is represented by  
an accessor-function in MOAL. The  
class diagram right corresponds  
to the declaration of them: 

 .i(σ) :: B -> Integer 
 .a(σ) :: C -> B 
	 .d(σ) :: B -> C

❑ This makes navigation expressions possible:

➢ b1.d(σ) :: C 

c1.a(σ) :: B  
 		  
		 	 b1.d(σ).a(σ).d(σ).a(σ) ...

 B 
 i : Integer 
 d: C

 C 
 a : B  

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of Object Attributes

❑ each attribute is represen- 
ted by a function in MOAL. 
The class diagram right 
corresponds to delaration 
of accessor functions: 
 .i(σ) :: B -> Integer 
 .a(σ) :: C -> B 
 .d(σ) :: B -> C

❑ Applying the σ−convention, this makes the following  
navigation expression syntax possible:

➢ b1.d :: C 

c1.a :: B b1.d.a.d.a ...

 B 
 i : Integer 
 d: C

 C 
 a : B  

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of Object Attributes

❑ Assessor functions “dereferentiate”  
pointers in a given state

❑ Accessor functions of class type are  
strict wrt. NULL.

➢ NULL.d = NULL 

NULL.a = NULL 
 

➢ Note that navigation expressions depend  
on their underlying state: 
 b1.d(σpre) .a(σpre) .d(σpre) .a(σpre) = NULL 
 b1.d(σ).a(σ).d(σ).a(σ) = b1 !!! 
 (cf. Object Diagram pp 28)

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of Object Attributes

❑ Assessor functions “dereferentiate”  
pointers in a given state

❑ Accessor functions of class type are  
strict wrt. NULL.

➢ NULL.d = NULL 

NULL.a = NULL 
 

➢ The σ convention allows to write : 
  
 old(b1.d.a.d.a) = NULL 
 b1.d.a.d.a = b1 !!! 
 (cf. Object Diagram pp 28)

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of Object Attributes

❑ Note that associations 
are meant to be « relations »

 in the mathematical sense. 
(Here, we treat them like 
aggregations, which is strict- 
ly speaking a design step)

Thus, states (object-graphs)

of this form do not represent

an association of the

cardinality 1 - 1: 
 

 B 

i :Integ
er  

 C 
  

1 
a

1 
d

 σ

b1 
i=1;	  
d=c1

b2 
i=4;	  
d=NULL

 c1 
 a=b2	  

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of Object Attributes

❑ This is reflected by 2 

« association integrity  
constraints ».  
For the 1-1-case, they are: 

➢ definition ass
B.d.a

≡ ∀x∈B. x.d.a = x  

➢ definition ass
C.a.d

≡ ∀x∈C. x.a.d = x 

 B 

i :Integ
er  

 C 
  

1 
a

1 
d

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of Object Attributes

❑ Attibutes can be Lists or  
Sets of class types: 

❑ Reminder: In class diagrams, 
this situation is represented 
traditionally by Associations 
(equivalent) 

❑ In analysis-level Class Diagrams, the type information 
is still omitted; due to overloading of ∀x∈X. P(x) etc. this will not hamper us
to specify ...  

 B 
 i : Integer  
 d: Set(C)

C 
a :List(B)

B 
i :Integer  

 C 
  

{List} 
a

{Set} 
 d

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of Object Attributes

❑ Cardinalities in  
Associations can  
be translated  
canonically into  
MOCL invariants: 

➢ definition card
B.d

≡ ∀x∈B. |x.d|= 10  

➢ definition card
C.a

≡ ∀x∈C. 1≤|x.a|≤ 5 

 B 
 i :Integer  

C 
  

1..5{List} 
a

{Set}10 
 d

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of Object Attributes

❑ Accessor functions are  
defined as follows for 
the case of NULL: 

➢ NULL.d = {} -- mapping to the neutral element

➢ NULL.a = []	 -- mapping to the neural element. 

B 
i :Integer  

 C 
  

{List} 
a

{Set} 
 d

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of Object Attributes

❑ Cardinalities in  
Associations can  
be translated  
canonically into  
MOCL invariants: 

➢ definition card
B.d

≡ ∀x∈B. |x.d|= 10  

➢ definition card
C.a

≡ ∀x∈C. 1≤|x.a|≤ 5 

B 
i :Integer  

 C 
  

1..5{List} 
a

{Set}10 
 d

9/8/20 B. Wolff - GLA - Advanced UML

Syntax and Semantics of Object Attributes

❑ The corresponding 
association integri- 
ty constraints for  
the *-*-case are: 

➢ definition assB.d.a ≡ ∀x∈B. x ∈ x.d.a  

➢ definition assC.a.d ≡ ∀x∈C. x ∈ x.a.d

B 
i :Integer  

 C 
  

1..5{List} 
a

{Set}10 
 d

9/8/20 B. Wolff - GLA - Advanced UML

Summary

❑ MOAL makes the UML to a real, formal specification 
language

❑ MOAL can be used to annotate Class Models, 
Sequence Diagrams and State Machines

❑ Working out, making explicit the constraints of  
these Diagrams is an important technique in the 
transition from Analysis documents to Designs.

