
L3 Mention Informatique

Parcours Informatique et MIAGE

Génie Logiciel Avancé - 
Advanced Software

Engineering

Part IV : An Introduction to Test

Burkhart Wolff

wolff@lri.fr

9/8/20 B. Wolff - GLA - Introduction to Test

Validation and Verification : A Clarification

❑ Validation :

➢ Does the system meet the clients requirements ?

➢ Will the performance be sufficient ?

➢ Will the usability be sufficient ? 

9/8/20 B. Wolff - GLA - Introduction to Test

Validation and Verification : A Clarification

❑ Validation :

➢ Does the system meet the clients requirements ?

➢ Will the performance be sufficient ?

➢ Will the usability be sufficient ? 

Do we build the right system ? 

9/8/20 B. Wolff - GLA - Introduction to Test

Validation and Verification : A Clarification

❑ Validation :

➢ Does the system meet the clients requirements ?

➢ Will the performance be sufficient ?

➢ Will the usability be sufficient ? 

Do we build the right system ? 

❑ Verification: Does the system meet the specification ? 

9/8/20 B. Wolff - GLA - Introduction to Test

Validation and Verification : A Clarification

❑ Validation :

➢ Does the system meet the clients requirements ?

➢ Will the performance be sufficient ?

➢ Will the usability be sufficient ? 

Do we build the right system ?

❑ Verification: Does the system meet the specification ? 

Do we build the system right ? Is it « correct » ?	 	 	 	
	 	

9/8/20 B. Wolff - GLA - Introduction to Test

How to do Validation ?

❑ Measuring customer satisfaction ... 
(well, that's post-hoc, and its difficult to predict) 

❑ Interviews, inspections (again post-hoc) 

❑ How to validate a system early?

➢ Simulation Environments like Mathlab/Simuling (Embedded Systems).

➢ Early prototypes, including performance analysis  

(for Software, but also Hardware-Processors)

➢ Mock-ups (functionality, ergonomics of GUI’s,,…)

➢ Test and Animation on the basis of formal specifications

9/8/20 B. Wolff - GLA - Introduction to Test

How to do Verification ?

❑ Test and Proof on the basis of formal specifications
(e.g., à la MOAL !) against programs or system

9/8/20 B. Wolff - GLA - Introduction to Test

How to do Verification ?

❑ Test and Proof on the basis of formal  
specifications (e.g., à la OCL !) against programs ... 
 
In the sequel, we concentrate on Testing for the  
purpose of Verification … (not really validation) 
 
The “Testing-As-Model-Validation” technique is,
however, very prominent in “reverse-engineering”
processes.

9/8/20 B. Wolff - GLA - Introduction to Test

Test vs. Proof

❑ Note: 

Some researcher consider “test” as opposite to “proof”! And they tend to  
apply the term “verification” only to proof and model-checking techniques…  
But:

❑ Modern SE terminology uses the term “verification “ to englobe both  

“test” and “proof” techniques

❑ The prejudice is somewhat outdated; it goes back to Dijkstra’s and

van Dalens famous statement in 72:  
“A test can only reveal the presence of bugs, but not their absence …”

❑ … but there is growing consensus nowadays that no technique can  
guarantee “the (total) absence of errors”

❑ many test critics refer to unsystematic tests

9/8/20 B. Wolff - GLA - Introduction to Test

Test vs. Proof

❑ Note: 

We consider (systematic!) test more as  
an approximation to formal proof. Reasons:

➢ The nature of the approximation can be  

made formally precise (via explicit test-assumptions ...)

➢ both techniques, model-based tests and formal verification, 

share a lot of technologies ...

➢ even full-blown proof attempts may profit from testing, 

since it can help to debug specs early and cost-effectively

➢ Moreover, tests are based on different application hypothesis 

than other verification techniques, combining them increases
confidence …

9/8/20 B. Wolff - GLA - Introduction to Test

Testing in the SE Process

! Where are Test-activities  
integrated in the SE-Process: 

➢ Extreme Programming/ 
Agile Development: 
 
On the methodological level 

➢ Instead of requirements, 
models, specs, … avoiding  
“Upfront bureaucracy”, 
one writes and maintains 
test suites ... 

Requirement 
Analysis

Conceptual 
Specification

Coding Phase

Unit Tests

Integration  
Tests

Architecture 
Conception

Design

Acceptance 
Test

Deploy- 
ment

9/8/20 B. Wolff - GLA - Introduction to Test

Testing in the SE Process

! Where are Test-activities  
integrated in the SE-Process: 

➢ On a conventional V process, 
(or RUP or CENELEC or …) 

➢ … in the early phases as  
validation technique for  
models / specs

Requirement 
Analysis

Conceptual 
Specification

Coding Phase

Unit Tests

Integration  
Tests

Architecture 
Conception

Design

Acceptance 
Test

Deploy- 
ment

9/8/20 B. Wolff - GLA - Introduction to Test

Testing in the SE Process

! Where are Test-activities  
integrated in the SE-Process: 

➢ On a conventional V process, 
(or RUP or CENELEC or …) 

➢ … in the later phases as  
verification technique for  
code / modules / components 
against models/specs

Requirement 
Analysis

Conceptual 
Specification

Coding Phase

Unit Tests

Integration  
Tests

Architecture 
Conception

Design

Acceptance 
Test

Deploy- 
ment

9/8/20 B. Wolff - GLA - Motivation

Recall partI : 
The Problem for Software-Quality

❑ A Very General Rule of Thumb: 

❑ Programming is not enough ! Overall,  
It is not even the most important cost-factor !! 

❑ A global estimate of project activities: 
 
Percentage of «Coding» ? 15 - 20 % 
Proportion of Validation et Verification ? ~20%  
All others : (Analysis,Design, Certification,  
 Maintenance, Management). 60 %

❑ These figures may vary substantially in  
particular industries (Automotive, Railways, Medical…)

9/8/20 B. Wolff - GLA - Introduction to Test

Verification Costs

❑ Conclusion:

➢ verification by test or proof is vitally important, 

and also critical in the development 

➢ to do it cost-effectively, it requires

□ a lot of expertise on products and process

□ a lot of knowledge over methods, 

tools, and tool chains ...

9/8/20 B. Wolff - GLA - Introduction to Test

Overview on the part on « Test »

❑ WHAT IS TESTING ?

❑ A taxonomy on types of tests

➢ Static Test / Dynamic (Runtime) Test

➢ Structural Test / Functional Test

➢ Statistic Tests

❑ Functional Test; Link to UML/OCL

➢ Dynamic Unit Tests, Static Unit Tests,

➢ Coverage Criteria

❑ Structural Tests

➢ Control Flow and Data Flow Graphs

➢ Tests and executed paths. Undecidability.

➢ Coverage Criteria

9/8/20 B. Wolff - GLA - Introduction to Test

What is testing ?

❑ It is an approximation to verification by proof,  
based on different hypothesis

❑ Main Advantage: can be integrated into  
SE processes fairly easy.

❑ Main emphasis: finding bugs early,

➢ either in the model  

➢ or in the program  

➢ or in both.

⇒ functional testing aka  

⇒ structural testing aka  

⇒ “grey-box-testing”

9/8/20 B. Wolff - GLA - Introduction to Test

What is systematic (formal) testing ?

❑ A systematic test is:

➢ process using programs and specifications  

to compute a set of test-cases  
under controlled conditions.

➢ Objective: the set of test-cases is 
complete wrt. to a given adequacy criterion 
telling that we “tested enough” in a certain sense

➢ Ideally: the process is tool-supported by a  
test-generation algorithm

9/8/20 B. Wolff - GLA - Introduction to Test

Known Limits of Systematic Testing

❑ We said, test is an approximation to verification, 
usually easier (but less expensive)  

❑ Note: Sometimes it is easier to verify by proof than 
by test. In particular: 

➢ low-level OS implementations like 
memory allocation, garbage collection 
memory virtualization, crypt-algorithms, ...

➢ non-deterministic programs with 
no control over the non-determinism.

9/8/20 B. Wolff - GLA - Introduction to Test

Taxonomy: Static / Dynamic Tests

❑ static: running a program before deployment on
data carefully constructed by the tester 

➢ analyse the result on the basis of all components

➢ working on some classes of executions symbolically 

= representing infinitely many executions

❑ dynamic: running the programme after
deployment, on “real data” as imposed by the
application domain 

➢ experiment with the “real” behaviour

➢ essentially used for post-hoc analysis and debugging

9/8/20 B. Wolff - GLA - Introduction to Test

Taxonomy: Unit / Sequence / Adaptive Tests

❑ unit testing: testing of a local component (function, module), 
typically only one step of the underlying state. 
(In functional programs, thats essentially all what 
you have to do!) 

❑ sequence testing: testing of a local component (function, module), but
typicallY sequences of executions, 
which typically depend on internal state 

❑ adaptive testing: testing components by sequences 
of steps, but these sequences represent communication where later parts
in the sequence depend on what has 
been earlier communicated

❑ random/statistical testing: not treated here.

9/8/20 B. Wolff - GLA - Introduction to Test

Functional (“Black-box”) Unit Test

❑ We got the spec, but not the program, which is
considered a black box:

input output???

Ce que le programme devrait faire…we focus on what the program should do !!!

9/8/20 B. Wolff - GLA - Introduction to Test

Structural (“white-box”) Tests

❑ we select “critical” paths

❑ specification used to verify the obtained results

what the program does and how …

x0

y0

z0

Results

x

y

z

Cond1(x,y,z)

Cond2(x,y,z)

9/8/20 B. Wolff - GLA - Introduction to Test

Functional Unit Test : An Example

The (informal) specification: 

	 Read a “Triangle Object” (with three sides of integral type), 
and test if it is isoscele, equilateral, or (default) arbitrary. 
 
Each length should be positive. 

Let’s give it a formal specification,  
and develop a test set ...

9/8/20 B. Wolff - GLA - Introduction to Test

Functional Unit Test : An Example

The specification in UML/MOAL: 

	 	 Triangles
a, b, c: Integer

- mk(Integer,Integer,Integer):Triangle

- is_Triangle(): {equ (*equilateral*), 
 iso (*isosceles*),

 arb (*arbitrary*)}

9/8/20 B. Wolff - GLA - Introduction to Test

Functional Unit Test : An Example

We add the constraints: 

	 	 Triangles
a, b, c: Integer

- mk(Integer,Integer,Integer):Triangle

- is_Triangle(): {equ (*equilateral*), 
 iso (*isosceles*),

 arb (*arbitrary*)}

inv 0<a ∧ 0<b ∧ 0<c
inv c≤a+b ∧ a≤b+c ∧ b≤c+a

operation t.is_Triangle():
post t.a=t.b ∧ t.b=t.c ⟶ result=equ
post (t.a≠t.b ∨ t.b≠t.c) ∧ 
 (t.a=t.b ∨ t.b=t.c ∨ t.a=t.c))⟶ result=iso
post (t.a≠t.b ∨ t.b≠t.c ∨ t.a≠t.c))⟶ result=arb

9/8/20 B. Wolff - GLA - Introduction to Test

Revision: Boolean Logic + Some Basic Rules

❑ ¬(a ∧ b)=¬ a ∨ ¬ b 		 	 	 (* deMorgan1 *)

❑ ¬(a ∨ b)=¬ a ∧ ¬ b	 	 	 	 (* deMorgan2 *)

❑ a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

❑ ¬(¬ a) = a

❑ a ∧ b = b ∧ a; a ∨ b = b ∨ a

❑ a ∧ (b ∧ c) = (a ∧ b) ∧ c

❑ a ∨ (b ∨ c) = (a ∨ b) ∨ c

❑ a ⟶ b = (¬ a) ∨ b

❑ (a=b ∧ P(a)) = P(b) 	 	 	 	 (* one point rule *) 

❑ let x = E in C(x) = C(E)	 	 	 (* let elimination *)

❑ if c then C else D = (c ∧ C) ∨ (¬ c ∧ D) = (c ⟶ C) ∧ (¬ c ⟶ D)

9/8/20 B. Wolff - GLA - Introduction to Test

Intuitive Test-Data Generation

❑ Consider the test specification (the “Test Case”): 
 
	 mk(x,y,z).isTriangle() ≡ X 
 
 
i.e. for which input (x,y,z) should an  
implementation of our contract yield which X ? 
 
 
Note that we define mk(0,0,0) to invalid, 
as well as all other invalid triangles ...

9/8/20 B. Wolff - GLA - Introduction to Test

Intuitive Test-Data Generation

❑ an arbitrary valid triangle: (3, 4, 5)

❑ an equilateral triangle: (5, 5, 5)

❑ an isoscele triangle and its permutations : 

(6, 6, 7), (7, 6, 6), (6, 7, 6)

❑ impossible triangles and their permutations : 

(1, 2, 4), (4, 1, 2), (2, 4, 1) -- x + y > z 

(1, 2, 3), (2, 4, 2), (5, 3, 2) -- x + y = z (necessary?)

❑ a zero length : (0, 5, 4), (4, 0, 5),

❑ . . .

❑ Would we have to consider negative values?

9/8/20 B. Wolff - GLA - Introduction to Test

Intuitive Test-Data Generation

❑ Ouf, is there a systematic and automatic  
way to compute all these tests ? 

❑ Can we avoid hand-written test-scripts ? 
Avoid the task to maintain them ? 

❑ And the question remains: 
 
 
 When did we test „enough“ ?

9/8/20 B. Wolff - GLA - Introduction to Test

Can we exploit the Spec so far ? 
How to perform Runtime-Test?

Well, we compile:

 

context X:

inv	l

1
: C

1
, ...,

inv 	 l
n
 : C

n 

 

to some checking code (with assert as in Junit, ACSL, ...) 
 
check_X() = assert(C

1
); ... ; assert(C

n
) 

 

Functional Dynamic Unit Test

9/8/20 B. Wolff - GLA - Introduction to Test

Functional Dynamic Unit Test

How to perform Runtime-Test?

Moreover, compile:

 

context C::m(a1:C1,...,an:Cn)

pre	: P(self,a1,...,an)

post 	 : Q(self,a1,...,an,result) 

to some checking code (with assert as in Junit, VCC, ACSL, ...) 

check_C(); check_C1(); ... ; check_Cn();

assert(P(self,a1,...,an));

result=run_m(self,a1,...,an);

assert(Q(self,a1,...,an,result));

9/8/20 B. Wolff - GLA - Introduction to Test

Functional Dynamic Unit Test in Context

❑ Obviously, systematic stimuli of functions is problematic in
runtime testing

❑ ... there may be a lot of dead code (libraries) 
(technical problem to measure code coverage)

❑ ... there may be an enormous amount of 
rarely executed code …

❑ Runtime testing requires a complete program

function under test

stubs

user input

9/8/20 B. Wolff - GLA - Introduction to Test

Conclusion: Functional Dynamic Tests

❑ Advantage: any violation of an invariant, a pre-condition or a post-
condition is detected for “real” data  

❑ If a violation occurs within an execution of a 
method, the error is locally reported. 

❑ On the other hand – it is post-hoc. Only when 
a problem occurred, we know where. And we need 
complete program. 

❑ Inefficiencies can be partly overcome by optimised compilations, 
but restricts the technique to very important, easy-to-compute 
properties

9/8/20 B. Wolff - GLA - Introduction to Test

Conclusion: Test in the SE Process

! General questions for verification in a process: 

➢ How to select test-data ? To which purpose ? 

➢ How to focus verification activities? 
Where to verify formally, and  
where to test, and when did we test enough? 
 
Note: The quality of a test is not necessarily  
increased by the number of test-cases ! 

➢ Automation ? Tools ?

9/8/20 B. Wolff - GLA - Introduction to Test

c:Client a:Account b:a.bank system_clock

balance()

result=r
deposit(m1)

Ok
schedule(I.b,m2,d1)

Ok

t:Transfer

set_global_time(d1)
exec_transferwithdraw(m2)

balance()

result=r’

σ1

σ2

σ3

σ4

