.. 1 ; m
universite {/

PARIS-SACLAY N

L3 Mention Informatique
Parcours Informatique et MIAGE

Génie Logiciel Avancé -
Advanced Software
Engineering
Part IV : An Introduction to Test

Burkhart Wolff
wolff@Iri.fr

Validation and Verification : A Clarification

2 Validation :
= Does the system meet the clients requirements ?

= Will the performance be sufficient ?
> Will the usability be sufficient ?

9/8/20 B. Wolff - GLA - Introduction to Test

Validation and Verification : A Clarification

2 Validation :
= Does the system meet the clients requirements ?

= Will the performance be sufficient ?
> Will the usability be sufficient ?

Do we build the right system ?

9/8/20 B. Wolff - GLA - Introduction to Test

Validation and Verification : A Clarification

2 Validation :
= Does the system meet the clients requirements ?

= Will the performance be sufficient ?
= Will the usability be sufficient ?

Do we build the right system ?

2 Verification: Does the system meet the specification ?

9/8/20 B. Wolff - GLA - Introduction to Test

Validation and Verification : A Clarification

2 Validation :

> Does the system meet the clients requirements ?

= Will the performance be sufficient ?
> Will the usability be sufficient ?

Do we build the right system ?

2 Verification: Does the system meet the specification ?

Do we build the system right ? 1Is it « correct » ?

9/8/20 B. Wolff - GLA - Introduction to Test

How to do Validation ?

4 Measuring customer satisfaction ...
(well, that's post-hoc, and its difficult to predict)

1 Interviews, inspections (again post-hoc)

2 How to validate a system early?
= Simulation Environments like Mathlab/Simuling (Embedded Systems).

= Early prototypes, including performance analysis
(for Software, but also Hardware-Processors)

> Mock-ups (functionality, ergonomics of 6UT's,,...)

> Test and Animation on the basis of formal specifications

9/8/20 B. Wolff - GLA - Introduction to Test

How to do Verification ?

2 Test and Proof on the basis of formal specifications
(e.g., a la MOAL !) against programs or system

9/8/20 B. Wolff - GLA - Introduction to Test

How to do Verification ?

2 Test and Proof on the basis of formal
specifications (e.g., a la OCL !) against programs ...

In the sequel, we concentrate on Testing for the
purpose of Verification ... (not really validation)

The "Testing-As-Model-Validation" technique is,
however, very prominent in "reverse-engineering”
processes.

9/8/20 B. Wolff - GLA - Introduction to Test

Test vs. Proof

2 Note:

Some researcher consider "test" as opposite to "proof”! And they tend to
apply the term "verification” only to proof and model-checking techniques...
But:

4 Modern SE terminology uses the term “verification * to englobe both
“test" and "proof"” techniques

2 The prejudice is somewhat outdated; it goes back to Dijkstra's and
van Dalens famous statement in 72:

“A test can only reveal the presence of bugs, but not their absence .."

a4 .. but there is growing consensus nowadays that no technique can
guarantee “the (total) absence of errors”

2 many test critics refer to unsystematic tests

9/8/20 B. Wolff - GLA - Introduction to Test

Test vs. Proof

2 Note:

We consider (systematic!) test more as
an approximation to formal proof. Reasons:

>

The nature of the approximation can be
made formally precise (via explicit test-assumptions ...)

> both techniques, model-based tests and formal verification,
share a lot of technologies ...

= even full-blown proof attempts may profit from testing,
since it can help to debug specs early and cost-effectively

= Moreover, tests are based on different application hypothesis
than other verification techniques, combining them increases
confidence ...

9/8/20 B. Wolff - GLA - Introduction to Test

Testing in the SE Process

. ay = R C r t
o Where are Test-activities eﬂn@ o Deploy-

integrated in the SE-Process: ment

= Extreme Programming/ ceptual HEEE BIEEE
. Spe ation Test
Agile Development:

On the methodological level chigécture Integration
CoMception Tests

> Instead of requirements,

models, specs, ... avoiding idn Unit Tests
“Upfront bureaucracy”, |

one writes and maintains
test suites ... | Coding Phase

9/8/20 B. Wolff - GLA - Introduction to Test

O

Testing in the SE Process

Where are Test-activities
integrated in the SE-Process:

>

On a conventional V process,

(or RUP or CENELEC or ...)

... in the early phases as
validation technique for
models / specs

Requirement
Analysis

Conceptual
Specification

L

Architecture
Conception

Design J

Deploy-
ment

Acceptance
Test

Integration

Tests

Unit Tests

Coding Phase

9/8/20

B. Wolff - GLA - Introduction to Test

Testing in the SE Process

O

Where are Test-activities
integrated in the SE-Process:

Requirement
Analysis

On a conventional V process,

Conceptual

Deploy-
ment

Specification

(or RUP or CENELEC or ...)

... in the later phases as
verification technique for
code / modules / components
against models/specs

Conception

Architecture

Design

Acceptance
Test

Integration

Tests

P

>l Unit Tests

Coding Phase

9/8/20

B. Wolff - GLA - Introduction to Test

Recall partI :
—eng.broblem for Soffware-Quality

2 A Very General Rule of Thumb:

3 Programming is not enough | Overall,
It is not even the most important cost-factor !

3 A global estimate of project activities:

Percentage of «Coding» ? 15-20 %

Proportion of Validation et Verification? ~20%

All others : (Analysis,Design, Certification,
Maintenance, Management). 60 %

2 These figures may vary substantially in
particular industries (Automotive, Railways, Medical...)

9/8/20 B. Wolff - GLA - Motivation

Verification Costs

2 Conclusion:
> verification by test or proof is vitally important,

and also critical in the development

> to do it cost-effectively, it requires
a lot of expertise on products and process

a lot of knowledge over methods,
tools, and tool chains ...

9/8/20 B. Wolff - GLA - Introduction to Test

Overview on the part on « Test »

2 WHATIS TESTING ?

2 A faxonomy on types of tests

= Static Test / Dynamic (Runtime) Test
> Structural Test / Functional Test
> Statistic Tests

2 Functional Test; Link to UML/OCL

= Dynamic Unit Tests, Static Unit Tests,

= Coverage Criteria

2 Structural Tests

= Control Flow and Data Flow Graphs
= Tests and executed paths. Undecidability.

= Coverage Criteria

9/8/20 B. Wolff - GLA - Introduction to Test

What is testing ?

It is an approximation to verification by proof,
based on different hypothesis

Main Advantage: can be integrated into
SE processes fairly easy.

Main emphasis: finding bugs ear!
= either in the model

> orin the program

> orin both.

9/8/20 B. Wolff - GLA - Introduction to Test

What is systematic (formal) testing ?

4 A systematic test is:

>

process using programs and specifications
to compute a set of test-cases
under controlled conditions.

Objective: the set of test-cases is

complete wrt. to a given adequacy criterion
telling that we "tested enough” in a certain sense
Ideally: the process is tool-supported by a
test-generation algorithm

9/8/20

B. Wolff - GLA - Introduction to Test

Known Limits of Systematic Testing

3 We said, test is an approximation to verification,
usually easier (but less expensive)

2 Note: Sometimes it is easier to verify by proof than
by test. In particular:

= low-level OS implementations like
memory allocation, garbage collection
memory virtualization, crypt-algorithms, ...

= non-deterministic programs with
no control over the non-determinism.

9/8/20 B. Wolff - GLA - Introduction to Test

Taxonomy: Static / Dynamic Tests

1 static: running a program before deployment on
data carefully constructed by the tester

= analyse the result on the basis of all components

= working on some classes of executions symbolically
= representing infinitely many executions

2 dynamic: running the programme after
deployment, on “real data” as imposed by the
application domain

= experiment with the "real” behaviour
= essentially used for post-hoc analysis and debugging

9/8/20 B. Wolff - GLA - Introduction to Test

Taxonomy: Unit / Sequence / Adaptive Tests

2 unit testing: testing of a local component (function, module),
typically only one step of the underlying state.

(In functional programs, thats essentially all what

you have to do!)

2 sequence testing: testing of a local component (function, module), but
typicallY sequences of executions,
which typically depend on internal state

2 adaptive testing: testing components by sequences

of steps, but these sequences represent communication where later parts
in the sequence depend on what has

been earlier communicated

2 random/statistical testing: not treated here.

9/8/20 B. Wolff - GLA - Introduction to Test

Functional ("Black-box”) Unit Test

2 We got the spec, but not the program, which is
considered a black box:

input output

we focus on what the program should do !!!

9/8/20 B. Wolff - GLA - Introduction to Test

Structural ("white-box”) Tests

2 we select “critical” paths

1 specification used to verify the obtained results

<
J

—_—

— l , Results

what the program does and how ...

9/8/20

B. Wolff - GLA - Introduction to Test

Functional Unit Test : An Example

The (informal) specification:

Read a "Triangle Object” (with three sides of integral type),
and test if it is isoscele, equilateral, or (default) arbitrary.

Each length should be positive.

Lets give it a formal specification,
and develop a test set ..

9/8/20 B. Wolff - GLA - Introduction to Test

Functional Unit Test : An Example

The specification in UML/MOAL:

Triangles

a, b, c: Integer

- mk (Integer, Integer, Integer) :Triangle

- 1s Triangle(): {equ (*equilateral™),
1so (*1sosceles¥™),
arb (*arbitrary*)}

9/8/20 B. Wolff - GLA - Introduction to Test

Functional Unit Test : An Example

We add the constraints:

==

inv 0<a A 0<b A 0O<c

irv—esatb—A asb+c AN b<c+a

Triangles

a, b, c: Integer

- mk (Integer, Integer, Integer) :Triangle

- 1s-Triangle(): {equ (*equilateral¥™),
1so (*1sosceles¥™),

arb (*arbitrary*)}

post (t.a#t.b V t.b#t.c) A

post ta=t.b A t.b=t.c — result=equ

(t.a=t.b V t.b=t.c V t.a=t.c))— result=iso
post (t.a#t.b V t.b#t.c V t.a#t.c))—> result=arb

N

9/8/20 B. Wolff - GLA - Introduction to Test

Revision: Boolean Logic + Some Basic Rules

-
2 =(arb)=mav-b (* deMorganl *)

2 s(avb)=manr-b (* deMorgan2 *)
4 aa(bvc)=(anb)v(anac)

4 a(-a)=a

4 aanb=bara avb=bva

2 aan(bac)=(anb)ac

4 av(bvec)=(avb)vec

1 a—b=(-a)vb

2 (a=b a P(a)) = P(b) (* one point rule *)

2 let x=EinC(x) = C(E) (* let elimination *)
2 ifcthenCelseD=(caCl)v(-caD) =(c—C)r (-c— D)

9/8/20 B. Wolff - GLA - Introduction to Test

Intuitive Test-Data Generation

2 Consider the test specification (the “Test Case”):

mKk(Xx,y,z).isTriangle() = X

i.e. for which input (X,y,z) should an
implementation of our contract yield which X ?

Note that we define mk(0,0,0) to invalid,
as well as all other invalid triangles ...

9/8/20 B. Wolff - GLA - Introduction to Test

Intuitive Test-Data Generation

J

an arbitrary valid triangle: (3, 4, 5)
an equilateral triangle: (5, 5, 5)

an isoscele triangle and its permutations :
(6,6,7),(7,6,6),(6,7,6)

impossible triangles and their permutations :
(1,2,4),(4,1,2),(2,4,1) -x+y>z
1,2,3),(2,4,2),(5,3,2) --x+y=2z(nhecessary?)
a zero length : (O, 5, 4), (4,0, 5),

Would we have to consider negative values?

9/8/20 B. Wolff - GLA - Introduction to Test

Intuitive Test-Data Generation

A QOuf, is there a systematic and automatic
way to compute all these tests ?

2 Can we avoid hand-written test-scripts ?
Avoid the task to maintain them ?

2 And the question remains:

When did we test ,enough™ ?

9/8/20 B. Wolff - GLA - Introduction to Test

Functional Dynamic Unit Test

Can we exploit the Spec so far ?
How to perform Runtime-Test?

Well, we compile:

context X:

invll : C1, . . .,

inv 1 = C

n n

to some checking code (with assert as in Junit, ACSL,

check X () = assert(Cl); - assert(Cn)

)

9/8/20 B. Wolff - GLA - Introduction to Test

Functional Dynamic Unit Test

How fo perform Runtime-Test?

Moreover, compile:

context C::m(alzcl,...,an:Cn)
pre: P(self,al,...,ag
post : Q(self,aﬂ...,ah,result)

to some checking code (with assert as in Junit, VCC, ACSL, ...

check C(); check C (); ... 7 check C ();
assert(P(self,a,,...,a));
result=run m(self,a , ...,a);

assert(Q(self,al,...,an,result));

9/8/20 B. Wolff - GLA - Introduction to Test

Functional Dynamic Unit Test in Context

- Obviously, systematic stimuli of functions is problematic in
runtime testing

- ... there may be a lot of dead code (libraries)
(technical problem to measure code coverage)

- ... there may be an enormous amount of
rarely executed code ...

- Runtime testing requires a complete program

2077 - - yser input
e —— function under test
7R - Stubs

9/8/20 B. Wolff - GLA - Introduction to Test

Conclusion: Functional Dynamic Tests

J4 Advantage: any violation of an invariant, a pre-condition or a post-
condition is detected for “real” data

A If a violation occurs within an execution of a
method, the error is locally reported.

A On the other hand - it is post-hoc. Only when
a problem occurred, we know where. And we need
complete program.

Q Inefficiencies can be partly overcome by optimised compilations,
but restricts the technique to very important, easy-to-compute
properties

9/8/20 B. Wolff - GLA - Introduction to Test

Conclusion: Test in the SE Process

O General questions for verification in a process:

>

>

>

How to select test-data ? To which purpose ?

How to focus verification activities?
Where to verify formally, and
where to test, and when did we test enough?

Note: The quality of a test is not necessarily
increased by the number of test-cases !

Automation ? Tools ?

9/8/20

B. Wolff - GLA - Introduction to Test

c:Client a:Account t:Transfer b:a.bank system_clock

balance()

ol result=r

deposit(m1

Ok

62
schedule(I.b,m2,d1)

Ok set_global_time(dl)r

o3

withdraw(m?2) exec_transfer

o4 baiance()

result=r’

9/8/20 B. Wolff - GLA - Introduction to Test

