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Difference between Validation and 
Verification

" Validation : 
# Does the system meet the clients requirements ? 
# Will the performance be sufficient ?
# Will the usability be sufficient ?

Do we build the right system ?

" Verification: Does the system meet the specification ?

Do we build the system right ?
   Is it « correct » ?    
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What are the limits of test-based 
verification

" Assumptions on „Testability“

(system under test must behave deterministically,
 or have controlled non-determinism, must be initializable)

" Assumptions like Test-Hypothesis

(Uniform / Regular behaviour is sometimes
 a „realistic“ assumption, but not always)

" Limits in perfection:
We know only up to a given “certainty” that the
program meets the specifiation ...
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How to do Verification ?

" In the sequel, we 
concentrate on Verification 
by Proof Techniques ...
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Standard example

The specification in UML/OCL (Classes in USE Notation):

class Triangles inherits_from Shapes
attributes

a : Integer

b : Integer

c : Integer

operations
mk(Integer,Integer,Integer):Triangle

is_Triangle(): triangle
end
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Standard example : Triangle

The specification in UML/OCL (Classes in USE Notation):

context Triangles:
inv def      : a.oclIsDefined() and b.oclIsDefined()...
inv pos      : 0<a and 0<b and 0<c
inv triangle : a+b>c  and  b+c>a  and  c+a>b 

context Triangle::isTriangle()
post equi : a=b and b=c implies result=equilateral
post iso  : ((a<>b or b<>c) and

  (a=b or b=c or a=c))implies result=isosceles
post default: (a<>b or b<>c) and

 (a<>b and b<>c and a<>c) 
  implies result=arbitrary
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Standard example: Triangle

procedure triangle(j,k,l : positive) is 
 eg: natural := 0;
begin 
if j + k <= l or k + l  <= j or l + j <= k then  

put(“impossible”);
else if  j = k  then  eg := eg + 1;  end if;
     if  j = l  then  eg := eg + 1;  end if;
     if  l = k  then eg := eg + 1;  end if;

  if  eg = 0  then  put(“quelconque”);
     elsif eg = 1  then put(“isocele”);
     else put(“equilateral”);
     end if;
end if;
end triangle;     
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Standard example : Exponentiation

The specification in UML/OCL (Classes in USE Notation):

context OclAny:
def exp(x,n) = if n >= 0 then 

           if n=0 then 1
else x*exp(x,n-1)
endif

            else OclUndefined endif

context Integer :: exponent(n:Integer):Real
pre  true
post result = if n>= 0 then exp(self,n)

           else 1 / exp(self,-n) endif
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Program Example : Exponentiation

Program_1 :
S:=1; P:=N;
while P >= 1 loop S:= S*X; P:= P-1; end loop;

Program_2 :
S:=1; P:= N; 
while P >= 1 loop 

if P mod 2 <> 0 then P := P–1; S := S*X; end if;
S:= S*S; P := P div 2;

end loop;

These programs have the following characteristics:

# one is more efficient, but more difficult to test
# good tests for one program are not necessarily

god for the other

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 9

Program Example : Exponentiation

Program_1 :
S:=1; P:=N;
while P >= 1 loop S:= S*X; P:= P-1; end loop;

Program_2 :
S:=1; P:= N; 
while P >= 1 loop 

if P mod 2 <> 0 then P := P–1; S := S*X; end if;
S:= S*S; P := P div 2;

end loop;

These programs have the following characteristics:

# one is more efficient, but more difficult to test
# good tests for one program are not necessarily

god for the other



12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 10

How to do Verification ?

" How to PROVE that the
programs meet the 
specification ?
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The role of formal proof 

" formal proofs are another technique for program validation

# based on a model of the underlying programming language,
the conformance of a concrete program to its specification
can be established

FOR ALL INPUT DATA AND ALL INITIAL STATES !!! 

" formal proofs as verification technique can:

# verify that a more concrete design-model “fits”
to a more abstract design model
(construction by formal refinement)

# verify that a program “fits” to a concrete design model.
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Who is using formal proofs in industry?

" Hardware Suppliers:
# INTEL: Proof of Floating Point Computation compliance

to IEEE754 
# INTEL: Correctness of Cash-Memory-Coherence Protocols
# AMD: Correctness of Floating-Point-Units againt Design-Spec
# GemPlus: Verification of Smart-Card-Applications in 

Security

" Software Suppliers:
# MicroSoft: Many Drivers running in „Kernel Mode“

were verified
# MicroSoft: Verification of the Hyper-V OS

(60000 Lines of Concurrent, Low-Level C Code ...)
# . . .
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Who is using formal proofs in industry?

" For the highest certification levels along the lines
of the Common Criteria, formal proofs are
# recommended (EAL6)
# mandatory (EAL7)

There had been now several industrial cases of 
EAL7 certifications ...

" For lower levels of certifications, still, formal specifications
were required. Recently, Microsoft has agreed in a 
Monopoly-Lawsuit against the European Commission to
provide a formal Spec of the Windows-Server-Protocols.
(The tools validating them use internally automated proofs).
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Pre-Rerquisites of Formal Proof Techniques

" A Formal Specification (OCL, but also Z, VDM, CSP, B, ...)
# know-how over the application domain
# informal and formal requirements of the system

" Either a formal model of the programming language
or a trusted code-generator from concrete design specs

" Tool Chains to generate, simplify, and solve large formulas
(decision procedures)

" Proof Tools and Proof Checker: proofs can also be false …

Nous, on le fera à la main ;-(
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Foundations: Proof Systems

" An Inference System (or Logical Calculus) allows
to infer formulas from a set of elementary
facts (axioms) and inferred facts by rules:

“from the assumptions A1 to An, you can infer

the conclusion An+1.” A rule with n=0 is an 

elementary fact. Variables occuring in the
formulas  An can be arbitraryly substituted.
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Foundations: Proof Systems

" An Inference System for the equality operator
(or “Equational Logic”) looks like this:

(where the first rule is an elementary fact).
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Foundations: Proof Systems

" A series of inference rule applications is usually 
displayed as Proof Tree (or : Derivation)

" The non-elemantary facts are the global 
assumptions (here f(a,b) = a and f(f(a,b),b) = c).
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Foundations: Proof Systems

" As a short-cut, we also write for a derivation:

... or  generally speaking: from global 
assumptions A to a theorem (in theory E) φ

This is what theorems are: derivable facts from
assumptions in a certain logical system ...
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A Proof System for Propositional Logic

" Propositional Logic (PL) in so-called natural deduction:
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A Proof System for Propositional Logic

" PL + E + Arithmetics (A) in so-called natural deduction:
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Hoare – Logic: A Proof System for Programs

" Now, can we build a 

Logic for Programs  ???

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 23

Hoare – Logic: A Proof System for Programs

" Now, can we build a 

Logic for Programs  ???



12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 24

Hoare – Logic: A Proof System for Programs

" Now, can we build a 

Logic for Programs  ???

Well, yes !  

There are actually lots of possibilities ...

" We consider the Hoare-Logic (Sir Anthony Hoare ...),
technically an inference system PL + E + A + Hoare
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Hoare – Logic: A Proof System for Programs

" Basis: IMP, (following Glenn Wynskell's Book)

 We have the following commands (cmd)
# the empty command   SKIP
# the assignment        x:== E (x  V)

# the sequential compos.  c
1
 ; c

2

# the conditional        IF cond THEN c
1
 ELSE c

2

# the loop                WHILE cond DO c

where c, c
1
, c

2
, are cmd's, V variables,

E an arithmetic expression, cond a boolean expr. 
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Hoare – Logic: A Proof System for Programs

" Core Concept: A Hoare Triple consisting ...

# of a pre-condition P
# a post-condition Q
# and a piece of program cmd

written:

P and Q are formulas over the variables V,
so they can be seen as set of possible states.
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Hoare Logic vs. Symbolic Execution

• HL is also based notion of a symbolic state.

state
sym

 =  V  Set(D)

   As usual, we denote sets by  

{ x | E  } 

   where E is a boolean expression.
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Hoare Logic vs. Symbolic Execution

• However, instead of:

|– {σ::state
sym

 | Pre(σ(X
1
), ..., σ (X

n
)}  

    cmd 
    {σ::state

sym
 | Post(σ(X

1
), ..., σ (X

n
)}

   where Pre and Post are sets of states. 
   we just write:

|– {Pre}  cmd {Post}

   where Pre and Post are expressions over program
   variables. 
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Hoare Logic vs. Symbolic Execution

• Intuitively:

   means:

If a program cmd starts in a state 
   admitted by Pre if it terminates, that 

the program must reach a state that satisfies
Post. 
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Hoare – Logic: A Proof System for Programs

" PL + E + A + Hoare (simplified binding) at a glance:
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Verification : Test or Proof 

Test
# Requires Testability of Programs (initialitzable,

reproducible behaviour, sufficient control over non-determinism)

# Can be also Work-Intensive !!!

# Requires Test-Tools 

# Requires a Formal Specification

# Makes Test-Hypothesis, which can be hard to justify !
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Summary

Formal Proof

# Can be very hard – up to infeasible (no one will 
probably ever prove correctness of MS Word!)

# Proof Work typically exceeds Programming work 
by a factor 10!

# Tools and Tool-Chains necessary

# Makes assumptions on language, method, tool-
correctness, too !
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Validation : Test or Proof (end)

Test and Proof are Complementary ...

" ... and extreme ends of a continuum : from static analysis to 
formal proof of “deep system properties”

" In practice, a good “verification plan” will be necessary to 
get the best results with a (usually limited) budget !!!

# detect parts which are easy to test
# detect parts which are easy to prove
# good start: maintained formal specification

! this leaves room for changes in the conception
! ... and for different implementation of sub-components
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Hoare – Logic: Outlook

" Can we be sure, that the logical systems are 
consistent ?

Well, yes, practically.
(See Hales Article in AMS: “Formal Proof”, 2008.

      http://www.ams.org/ams/press/hales-nots-dec08.html)

# Can we ever be sure, that a specification “means” what 
we intend ?

   Well, no. 
   But when can we ever be entirely sure  that we know 
   what we have in mind ?
   But at least, we can gain confidence validating specs, i.e. by   
   animation and test, thus, by experimenting with them ...
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