
 2017-2018

Cycle Ingénieur – 2ème année
Département Informatique

Verification and Validation
Part IV : Proof-based Verification

(I)
Burkhart Wolff

Département Informatique
Université Paris-Sud / Orsay

 2017-2018

Cycle Ingénieur – 2ème année
Département Informatique

Verification and Validation
Part IV : Proof-based Verification

(I)
Burkhart Wolff

Département Informatique
Université Paris-Sud / Orsay

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 2

Difference between Validation and
Verification

" Validation :
Does the system meet the clients requirements ?
Will the performance be sufficient ?
Will the usability be sufficient ?

Do we build the right system ?

" Verification: Does the system meet the specification ?

Do we build the system right ?
 Is it « correct » ?

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 2

Difference between Validation and
Verification

" Validation :
Does the system meet the clients requirements ?
Will the performance be sufficient ?
Will the usability be sufficient ?

Do we build the right system ?

" Verification: Does the system meet the specification ?

Do we build the system right ?
 Is it « correct » ?

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 3

What are the limits of test-based
verification

" Assumptions on „Testability“

(system under test must behave deterministically,
 or have controlled non-determinism, must be initializable)

" Assumptions like Test-Hypothesis

(Uniform / Regular behaviour is sometimes
 a „realistic“ assumption, but not always)

" Limits in perfection:
We know only up to a given “certainty” that the
program meets the specifiation ...

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 3

What are the limits of test-based
verification

" Assumptions on „Testability“

(system under test must behave deterministically,
 or have controlled non-determinism, must be initializable)

" Assumptions like Test-Hypothesis

(Uniform / Regular behaviour is sometimes
 a „realistic“ assumption, but not always)

" Limits in perfection:
We know only up to a given “certainty” that the
program meets the specifiation ...

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 4

How to do Verification ?

" In the sequel, we
concentrate on Verification
by Proof Techniques ...

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 4

How to do Verification ?

" In the sequel, we
concentrate on Verification
by Proof Techniques ...

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 5

Standard example

The specification in UML/OCL (Classes in USE Notation):

class Triangles inherits_from Shapes
attributes

a : Integer

b : Integer

c : Integer

operations
mk(Integer,Integer,Integer):Triangle

is_Triangle(): triangle
end

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 5

Standard example

The specification in UML/OCL (Classes in USE Notation):

class Triangles inherits_from Shapes
attributes

a : Integer

b : Integer

c : Integer

operations
mk(Integer,Integer,Integer):Triangle

is_Triangle(): triangle
end

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 6

Standard example : Triangle

The specification in UML/OCL (Classes in USE Notation):

context Triangles:
inv def : a.oclIsDefined() and b.oclIsDefined()...
inv pos : 0<a and 0<b and 0<c
inv triangle : a+b>c and b+c>a and c+a>b

context Triangle::isTriangle()
post equi : a=b and b=c implies result=equilateral
post iso : ((a<>b or b<>c) and

 (a=b or b=c or a=c))implies result=isosceles
post default: (a<>b or b<>c) and

 (a<>b and b<>c and a<>c)
 implies result=arbitrary

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 6

Standard example : Triangle

The specification in UML/OCL (Classes in USE Notation):

context Triangles:
inv def : a.oclIsDefined() and b.oclIsDefined()...
inv pos : 0<a and 0<b and 0<c
inv triangle : a+b>c and b+c>a and c+a>b

context Triangle::isTriangle()
post equi : a=b and b=c implies result=equilateral
post iso : ((a<>b or b<>c) and

 (a=b or b=c or a=c))implies result=isosceles
post default: (a<>b or b<>c) and

 (a<>b and b<>c and a<>c)
 implies result=arbitrary

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 7

Standard example: Triangle

procedure triangle(j,k,l : positive) is
 eg: natural := 0;
begin
if j + k <= l or k + l <= j or l + j <= k then

put(“impossible”);
else if j = k then eg := eg + 1; end if;
 if j = l then eg := eg + 1; end if;
 if l = k then eg := eg + 1; end if;

 if eg = 0 then put(“quelconque”);
 elsif eg = 1 then put(“isocele”);
 else put(“equilateral”);
 end if;
end if;
end triangle;

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 7

Standard example: Triangle

procedure triangle(j,k,l : positive) is
 eg: natural := 0;
begin
if j + k <= l or k + l <= j or l + j <= k then

put(“impossible”);
else if j = k then eg := eg + 1; end if;
 if j = l then eg := eg + 1; end if;
 if l = k then eg := eg + 1; end if;

 if eg = 0 then put(“quelconque”);
 elsif eg = 1 then put(“isocele”);
 else put(“equilateral”);
 end if;
end if;
end triangle;

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 8

Standard example : Exponentiation

The specification in UML/OCL (Classes in USE Notation):

context OclAny:
def exp(x,n) = if n >= 0 then

 if n=0 then 1
else x*exp(x,n-1)
endif

 else OclUndefined endif

context Integer :: exponent(n:Integer):Real
pre true
post result = if n>= 0 then exp(self,n)

 else 1 / exp(self,-n) endif

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 8

Standard example : Exponentiation

The specification in UML/OCL (Classes in USE Notation):

context OclAny:
def exp(x,n) = if n >= 0 then

 if n=0 then 1
else x*exp(x,n-1)
endif

 else OclUndefined endif

context Integer :: exponent(n:Integer):Real
pre true
post result = if n>= 0 then exp(self,n)

 else 1 / exp(self,-n) endif

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 9

Program Example : Exponentiation

Program_1 :
S:=1; P:=N;
while P >= 1 loop S:= S*X; P:= P-1; end loop;

Program_2 :
S:=1; P:= N;
while P >= 1 loop

if P mod 2 <> 0 then P := P–1; S := S*X; end if;
S:= S*S; P := P div 2;

end loop;

These programs have the following characteristics:

one is more efficient, but more difficult to test
good tests for one program are not necessarily

god for the other

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 9

Program Example : Exponentiation

Program_1 :
S:=1; P:=N;
while P >= 1 loop S:= S*X; P:= P-1; end loop;

Program_2 :
S:=1; P:= N;
while P >= 1 loop

if P mod 2 <> 0 then P := P–1; S := S*X; end if;
S:= S*S; P := P div 2;

end loop;

These programs have the following characteristics:

one is more efficient, but more difficult to test
good tests for one program are not necessarily

god for the other

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 10

How to do Verification ?

" How to PROVE that the
programs meet the
specification ?

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 10

How to do Verification ?

" How to PROVE that the
programs meet the
specification ?

 2017-2018

Introduction to

proof-based

program verification

 2017-2018

Introduction to

proof-based

program verification

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 12

The role of formal proof

" formal proofs are another technique for program validation

based on a model of the underlying programming language,
the conformance of a concrete program to its specification
can be established

FOR ALL INPUT DATA AND ALL INITIAL STATES !!!

" formal proofs as verification technique can:

verify that a more concrete design-model “fits”
to a more abstract design model
(construction by formal refinement)

verify that a program “fits” to a concrete design model.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 12

The role of formal proof

" formal proofs are another technique for program validation

based on a model of the underlying programming language,
the conformance of a concrete program to its specification
can be established

FOR ALL INPUT DATA AND ALL INITIAL STATES !!!

" formal proofs as verification technique can:

verify that a more concrete design-model “fits”
to a more abstract design model
(construction by formal refinement)

verify that a program “fits” to a concrete design model.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 13

Who is using formal proofs in industry?

" Hardware Suppliers:
INTEL: Proof of Floating Point Computation compliance

to IEEE754
INTEL: Correctness of Cash-Memory-Coherence Protocols
AMD: Correctness of Floating-Point-Units againt Design-Spec
GemPlus: Verification of Smart-Card-Applications in

Security

" Software Suppliers:
MicroSoft: Many Drivers running in „Kernel Mode“

were verified
MicroSoft: Verification of the Hyper-V OS

(60000 Lines of Concurrent, Low-Level C Code ...)
. . .

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 13

Who is using formal proofs in industry?

" Hardware Suppliers:
INTEL: Proof of Floating Point Computation compliance

to IEEE754
INTEL: Correctness of Cash-Memory-Coherence Protocols
AMD: Correctness of Floating-Point-Units againt Design-Spec
GemPlus: Verification of Smart-Card-Applications in

Security

" Software Suppliers:
MicroSoft: Many Drivers running in „Kernel Mode“

were verified
MicroSoft: Verification of the Hyper-V OS

(60000 Lines of Concurrent, Low-Level C Code ...)
. . .

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 14

Who is using formal proofs in industry?

" For the highest certification levels along the lines
of the Common Criteria, formal proofs are
recommended (EAL6)
mandatory (EAL7)

There had been now several industrial cases of
EAL7 certifications ...

" For lower levels of certifications, still, formal specifications
were required. Recently, Microsoft has agreed in a
Monopoly-Lawsuit against the European Commission to
provide a formal Spec of the Windows-Server-Protocols.
(The tools validating them use internally automated proofs).

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 14

Who is using formal proofs in industry?

" For the highest certification levels along the lines
of the Common Criteria, formal proofs are
recommended (EAL6)
mandatory (EAL7)

There had been now several industrial cases of
EAL7 certifications ...

" For lower levels of certifications, still, formal specifications
were required. Recently, Microsoft has agreed in a
Monopoly-Lawsuit against the European Commission to
provide a formal Spec of the Windows-Server-Protocols.
(The tools validating them use internally automated proofs).

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 15

Pre-Rerquisites of Formal Proof Techniques

" A Formal Specification (OCL, but also Z, VDM, CSP, B, ...)
know-how over the application domain
informal and formal requirements of the system

" Either a formal model of the programming language
or a trusted code-generator from concrete design specs

" Tool Chains to generate, simplify, and solve large formulas
(decision procedures)

" Proof Tools and Proof Checker: proofs can also be false …

Nous, on le fera à la main ;-(

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 15

Pre-Rerquisites of Formal Proof Techniques

" A Formal Specification (OCL, but also Z, VDM, CSP, B, ...)
know-how over the application domain
informal and formal requirements of the system

" Either a formal model of the programming language
or a trusted code-generator from concrete design specs

" Tool Chains to generate, simplify, and solve large formulas
(decision procedures)

" Proof Tools and Proof Checker: proofs can also be false …

Nous, on le fera à la main ;-(

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 16

Foundations: Proof Systems

" An Inference System (or Logical Calculus) allows
to infer formulas from a set of elementary
facts (axioms) and inferred facts by rules:

“from the assumptions A1 to An, you can infer

the conclusion An+1.” A rule with n=0 is an

elementary fact. Variables occuring in the
formulas An can be arbitraryly substituted.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 16

Foundations: Proof Systems

" An Inference System (or Logical Calculus) allows
to infer formulas from a set of elementary
facts (axioms) and inferred facts by rules:

“from the assumptions A1 to An, you can infer

the conclusion An+1.” A rule with n=0 is an

elementary fact. Variables occuring in the
formulas An can be arbitraryly substituted.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 17

Foundations: Proof Systems

" An Inference System for the equality operator
(or “Equational Logic”) looks like this:

(where the first rule is an elementary fact).
12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 17

Foundations: Proof Systems

" An Inference System for the equality operator
(or “Equational Logic”) looks like this:

(where the first rule is an elementary fact).

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 18

Foundations: Proof Systems

" A series of inference rule applications is usually
displayed as Proof Tree (or : Derivation)

" The non-elemantary facts are the global
assumptions (here f(a,b) = a and f(f(a,b),b) = c).

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 18

Foundations: Proof Systems

" A series of inference rule applications is usually
displayed as Proof Tree (or : Derivation)

" The non-elemantary facts are the global
assumptions (here f(a,b) = a and f(f(a,b),b) = c).

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 19

Foundations: Proof Systems

" As a short-cut, we also write for a derivation:

... or generally speaking: from global
assumptions A to a theorem (in theory E) φ

This is what theorems are: derivable facts from
assumptions in a certain logical system ...

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 19

Foundations: Proof Systems

" As a short-cut, we also write for a derivation:

... or generally speaking: from global
assumptions A to a theorem (in theory E) φ

This is what theorems are: derivable facts from
assumptions in a certain logical system ...

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 20

A Proof System for Propositional Logic

" Propositional Logic (PL) in so-called natural deduction:

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 20

A Proof System for Propositional Logic

" Propositional Logic (PL) in so-called natural deduction:

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 21

A Proof System for Propositional Logic

" Propositional Logic (PL) in so-called natural deduction:

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 21

A Proof System for Propositional Logic

" Propositional Logic (PL) in so-called natural deduction:

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 22

A Proof System for Propositional Logic

" PL + E + Arithmetics (A) in so-called natural deduction:

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 22

A Proof System for Propositional Logic

" PL + E + Arithmetics (A) in so-called natural deduction:

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 23

Hoare – Logic: A Proof System for Programs

" Now, can we build a

Logic for Programs ???

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 23

Hoare – Logic: A Proof System for Programs

" Now, can we build a

Logic for Programs ???

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 24

Hoare – Logic: A Proof System for Programs

" Now, can we build a

Logic for Programs ???

Well, yes !

There are actually lots of possibilities ...

" We consider the Hoare-Logic (Sir Anthony Hoare ...),
technically an inference system PL + E + A + Hoare

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 24

Hoare – Logic: A Proof System for Programs

" Now, can we build a

Logic for Programs ???

Well, yes !

There are actually lots of possibilities ...

" We consider the Hoare-Logic (Sir Anthony Hoare ...),
technically an inference system PL + E + A + Hoare

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 25

Hoare – Logic: A Proof System for Programs

" Basis: IMP, (following Glenn Wynskell's Book)

 We have the following commands (cmd)
the empty command SKIP
the assignment x:== E (x  V)

the sequential compos. c
1
 ; c

2

the conditional IF cond THEN c
1
 ELSE c

2

the loop WHILE cond DO c

where c, c
1
, c

2
, are cmd's, V variables,

E an arithmetic expression, cond a boolean expr.
12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 25

Hoare – Logic: A Proof System for Programs

" Basis: IMP, (following Glenn Wynskell's Book)

 We have the following commands (cmd)
the empty command SKIP
the assignment x:== E (x  V)

the sequential compos. c
1
 ; c

2

the conditional IF cond THEN c
1
 ELSE c

2

the loop WHILE cond DO c

where c, c
1
, c

2
, are cmd's, V variables,

E an arithmetic expression, cond a boolean expr.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 26

Hoare – Logic: A Proof System for Programs

" Core Concept: A Hoare Triple consisting ...

of a pre-condition P
a post-condition Q
and a piece of program cmd

written:

P and Q are formulas over the variables V,
so they can be seen as set of possible states.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 26

Hoare – Logic: A Proof System for Programs

" Core Concept: A Hoare Triple consisting ...

of a pre-condition P
a post-condition Q
and a piece of program cmd

written:

P and Q are formulas over the variables V,
so they can be seen as set of possible states.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 27

Hoare Logic vs. Symbolic Execution

• HL is also based notion of a symbolic state.

state
sym

 = V  Set(D)

 As usual, we denote sets by

{ x | E }

 where E is a boolean expression.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 27

Hoare Logic vs. Symbolic Execution

• HL is also based notion of a symbolic state.

state
sym

 = V  Set(D)

 As usual, we denote sets by

{ x | E }

 where E is a boolean expression.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 28

Hoare Logic vs. Symbolic Execution

• However, instead of:

|– {σ::state
sym

 | Pre(σ(X
1
), ..., σ (X

n
)}

 cmd
 {σ::state

sym
 | Post(σ(X

1
), ..., σ (X

n
)}

 where Pre and Post are sets of states.
 we just write:

|– {Pre} cmd {Post}

 where Pre and Post are expressions over program
 variables.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 28

Hoare Logic vs. Symbolic Execution

• However, instead of:

|– {σ::state
sym

 | Pre(σ(X
1
), ..., σ (X

n
)}

 cmd
 {σ::state

sym
 | Post(σ(X

1
), ..., σ (X

n
)}

 where Pre and Post are sets of states.
 we just write:

|– {Pre} cmd {Post}

 where Pre and Post are expressions over program
 variables.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 29

Hoare Logic vs. Symbolic Execution

• Intuitively:

 means:

If a program cmd starts in a state
 admitted by Pre if it terminates, that

the program must reach a state that satisfies
Post.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 29

Hoare Logic vs. Symbolic Execution

• Intuitively:

 means:

If a program cmd starts in a state
 admitted by Pre if it terminates, that

the program must reach a state that satisfies
Post.

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 30

Hoare – Logic: A Proof System for Programs

" PL + E + A + Hoare (simplified binding) at a glance:

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 30

Hoare – Logic: A Proof System for Programs

" PL + E + A + Hoare (simplified binding) at a glance:

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 31

Verification : Test or Proof

Test
Requires Testability of Programs (initialitzable,

reproducible behaviour, sufficient control over non-determinism)

Can be also Work-Intensive !!!

Requires Test-Tools

Requires a Formal Specification

Makes Test-Hypothesis, which can be hard to justify !

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 31

Verification : Test or Proof

Test
Requires Testability of Programs (initialitzable,

reproducible behaviour, sufficient control over non-determinism)

Can be also Work-Intensive !!!

Requires Test-Tools

Requires a Formal Specification

Makes Test-Hypothesis, which can be hard to justify !

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 32

Summary

Formal Proof

Can be very hard – up to infeasible (no one will
probably ever prove correctness of MS Word!)

Proof Work typically exceeds Programming work
by a factor 10!

Tools and Tool-Chains necessary

Makes assumptions on language, method, tool-
correctness, too !

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 32

Summary

Formal Proof

Can be very hard – up to infeasible (no one will
probably ever prove correctness of MS Word!)

Proof Work typically exceeds Programming work
by a factor 10!

Tools and Tool-Chains necessary

Makes assumptions on language, method, tool-
correctness, too !

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 33

Validation : Test or Proof (end)

Test and Proof are Complementary ...

" ... and extreme ends of a continuum : from static analysis to
formal proof of “deep system properties”

" In practice, a good “verification plan” will be necessary to
get the best results with a (usually limited) budget !!!

detect parts which are easy to test
detect parts which are easy to prove
good start: maintained formal specification

! this leaves room for changes in the conception
! ... and for different implementation of sub-components

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 33

Validation : Test or Proof (end)

Test and Proof are Complementary ...

" ... and extreme ends of a continuum : from static analysis to
formal proof of “deep system properties”

" In practice, a good “verification plan” will be necessary to
get the best results with a (usually limited) budget !!!

detect parts which are easy to test
detect parts which are easy to prove
good start: maintained formal specification

! this leaves room for changes in the conception
! ... and for different implementation of sub-components

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 34

Hoare – Logic: Outlook

" Can we be sure, that the logical systems are
consistent ?

Well, yes, practically.
(See Hales Article in AMS: “Formal Proof”, 2008.

 http://www.ams.org/ams/press/hales-nots-dec08.html)

Can we ever be sure, that a specification “means” what
we intend ?

 Well, no.
 But when can we ever be entirely sure that we know
 what we have in mind ?
 But at least, we can gain confidence validating specs, i.e. by
 animation and test, thus, by experimenting with them ...

12/03/18 B. Wolff - Ingé. 2 - Proof-Intro 34

Hoare – Logic: Outlook

" Can we be sure, that the logical systems are
consistent ?

Well, yes, practically.
(See Hales Article in AMS: “Formal Proof”, 2008.

 http://www.ams.org/ams/press/hales-nots-dec08.html)

Can we ever be sure, that a specification “means” what
we intend ?

 Well, no.
 But when can we ever be entirely sure that we know
 what we have in mind ?
 But at least, we can gain confidence validating specs, i.e. by
 animation and test, thus, by experimenting with them ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

