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Abstract

Sequence Testing is an important sub-domain of formal model-based Testing.
It addresses test scenarios where the tester controls the state of the System
Under Test (SUT) only at the initialization time and then indirectly via a
sequence of inputs. The latter may stimulate observable outputs on which the
test-verdict must be based solely.

A number of automata-based test-theories have been suggested that work
fairly well for traces of impressing length — provided that the state space of
the SUT is small. Whenever large state spaces have to be modeled — as is
the case for operating systems, data-bases or web-services — both theory and
implementations resists obstinately practical applicability: Theoretically,
because symbolic representations of state spaces have to be treated;
Practically, because these difficulties result in a small number of tools
addressing sparse and fairly limited application domains.

In this talk, | will present a novel approach to the problem based on Monads,
their theory developed in Isabelle/HOL. Notions like Test-Sequence and Test-
Refinement can be rephrased in terms of Monads, which opens the way both
for efficient symbolic execution of system models as well as the efficient
compilation to test-drivers. Theoretically, the monadic approach allows to

1.) resists the tendency to surrender to finitism and constructivism at the first-
best opportunity

2.) provides a sensible shift from syntax to semantics: instead of a first-order,
intentional view in nodes and events in automata, the heart of the calculus is
on computations and their compositions



Overview

HOL-TestGen and its Business-Case

The Standard Workflow for Unit Testing

- Demo

+ The Workflow for Sequence Tests



HOL-TestGen and
Its Business-Case

e HOL-TestGen is somewhat unusual test-Tool:

« implemented as "PlugIn”in a major Interactive
Theorem Proving Environment : Isabelle/HOL

e conceived as formal testcase-generation method based on
symbolic execution of a model (in HOL)

* Favors Expressivity and emphasizes Test-Plans
as formal entities; emphasis on Interactivity

* Document-centric test-development
(inspired by SPECEXPLORER)
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HOL-TestGen as Plugin
in the Isabelle Architecture

e
o I

ML running on multi-core arch

Cl | C2 C3 | C4
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HOL-TestGen as Plugin
in the Isabelle Architecture

Advantage: _\.
_ Scala System Interface
e Reuse of powerful
components in “ .
unique, interactive
integrated
e secamless integration
of test and proof
activities

environment

ML running on multi-core arch

Cl | C2 C3 | C4
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HOL-TestGen Workflow

* Modelisation
e writing background theory of problem domain



Black-Box Testing:

"The Standard Workflow”
* Writing a test-theory (the “model”)
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Black-Box Testing:

“"The Standard Workflow”
* Writing a ftest-theory (the “"model”)

Example: Sorting in HOL

primrec is_sorted ::"int list = bool”
where “is_sorted [] = True”
| “is_sorted (x#xs) =
case xs of
[] = True
| (y#ys) = (x<y) A is_sorted ys”
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Black-Box Testing:

“"The Standard Workflow”
* Writing a ftest-theory (the “"model”)

Example: Sorting in HOL

primrec is_sorted ::"int list = bool”
where “is_sorted [] = True”
| “is_sorted (x#xs) =
case xs of
[] = True
| (y#ys) = (x<y) A is_sorted ys”
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Black-Box Testing:

"The Standard Workflow”
* Writing a fest-theory

* Writing a fest-specification TS
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Black-Box Testing:

"The Standard Workflow”
* Writing a fest-theory

* Writing a fest-specification TS

testspec “ is_sorted(PUT x)
A asc(x, PUT x)”
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Black-Box Testing:

"The Standard Workflow”
* Writing a fest-theory

* Writing a fest-specification TS

pattern:

testspec “pre x — post x (PUTx)"
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Black-Box Testing:

"The Standard Workflow”
®* Writing a test-theory

®* Writing a test-specification TS
example:

test spec “is_sorted x — is_sorted (PUT a x)”
or
test spec “is_sorted (PUT [)’
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Black-Box Testing:

"The Standard Workflow”
®* Writing a test-theory

®* Writing a test-specification TS

® Conversion into test-theorem
("Testcase Generation”)

1.7.2015 Can Testing Be Liberated from the Automata Style ?

15



Black-Box Testing:

"The Standard Workflow”
®* Writing a test-theory

®* Writing a test-specification TS

®* Conversion into test-theorem

("Testcase Generation”)

apply(gen_test cases 3 1 “PUT")
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Black-Box Testing:

"The Standard Workflow”
* Writing a test-theory

* Writing a test-specification TS

®* Conversion into test-theorem

("Testcase Generation”)
1€, = ...= TC = THYP(H)=...= THYP(H ) = TS

where testcases TCi have the form

Constraint (X) = . . . = Constraint (X) = P(prog x)

and where THYP(H) are test-hypothesis
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Black-Box Testing:

"The Standard Workflow”
®* Writing a test-theory

®* Writing a test-specification TS

®* Conversion into test-theorem

Example:

Is_sorted (PUTI)
1:is_sorted(PUT [])
2:is_sorted(PUT [?X])
3: THYP(3 x. is_sorted(PUT [x]) =V x. is_sorted(PUT [x]))
4:is_sorted(PUT [?X, ?Y])
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Black-Box Testing:

"The Standard Workflow”
* Writing a test-theory

®* Writing a test-specification TS

® Conversion into test-theorem

5. THYP(3 x y. is_sorted(PUT[x,y]) —
v X y. is_sorted(PUT[x,y]))
6: is_sorted(PUT [?X, ?Y, ?X])
/. THYP(3 xyz. is_sorted(PUT [x,y,z]) —
v Xy z.is_sorted(PUT [x,y,z]))
17.20158; THYP(3 < |l| e istingrrtied(Pd bt )jutomata Style 2
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Black-Box Testing:

"The Standard Workflow”
Writing a test-theory

Writing a test-specification TS

Conversion into fest-theorem

Generation of test-data
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Black-Box Testing:

"The Standard Workflow”
Writing a test-theory

Writing a test-specification TS

Conversion into fest-theorem

Generation of test-data

gen test data“..."
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Black-Box Testing:

"The Standard Workflow”
Writing a test-theory

Writing a test-specification TS

Conversion into fest-theorem

Generation of test-data

is_sorted(PUT 1])
Is_sorted(PUT 1 [0])
Is_sorted(PUT 1 [2])
Is_sorted(PUT 1 [1,2])
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Black-Box Testing:

"The Standard Workflow”
Writing a test-theory

Writing a test-specification TS

Conversion into fest-theorem

Generation of test-data

Generating a test-harness
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Black-Box Testing:

"The Standard Workflow”
Writing a test-theory

Writing a test-specification TS

Conversion into fest-theorem
Generation of test-data
Generating a test-harness

Run of testharness and
generation of test-document
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Midi Example: Red Black Trees
Red-Black-Trees: Test Specification

testspec :
(redinv t A
blackinv t)

—

(redinv (delete x t) A
blackinv (delete x t))

where delete is the program under fest.



HOL-TestGen Workflow

Demo



Introduction to Sequence Testing

®* HOL is a state-less language;

how to model and test stateful systems ?

®* How to test systems where you have only
control over the initial state ?

®* How fo test concurrent programs
implementing a model ?
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Introduction to Sequence Testing

Testability Hypothesis in Sequence Testing

1. The tester can reset the system under test (the SUT)
into a known initial state,

2. the tester can stimulate the SUT only via the operation-
calls and input of a known interface; while the internal
state of the SUT is hidden fo the tester, the SUT is
assumed to be only controlled by these stimuli, and

3. the SUT behaves deterministic with respect to an
observed sequence of input-output pairs (it is input-output
deterministic).
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Introduction to Sequence Testing

* Some notions of traditional sequence testing

- Input-Output Automata, e.g. A = (0, T::(0 x (1x0) x O)set),

0 is the type of states

e | the type of inputs (input events)

0 the type of outputs (output events)
T the set of input-output-transitions.
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Introduction to Sequence Testing

* Some notions of fraditional sequence testing
e Inpuf-Output Automata, e.g. A= (0, T::(0,(L, 0),0)set),
@ @

(1n ,a“out:1) (1n ,a“out:1)

(in:,,a“,out: 1y‘ ~(in:,,a“,out:2) (in:, bo;tl)’\(m ,b“,out:1)
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Introduction to Sequence Testing

* Some notions of traditional sequence testing
e Inpuf-Output Automata, e.g. A= (0, T::(0,(L, 0),0)set),
@ @

(m ,a“out:1) (1n ,a“out:1)

(in:,,a“,out: 1y< ~(in:,,a%,0ut:2) (in:, bg%l)}j\(m ,b“,out:1)

“ ” “ ”

« teTrace(A) :: (1, 0)set (eg. [(“a

» set of enabled inputs after a trace:

In\(t) (eg. Iny([("a",1)]) ={"a"})

« set of possible outputs after trace and input:
Outa(ti) (eg. Outy([(*a”,1)]) =(1,2})
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Introduction to Sequence Testing

* Some notions of traditional sequence testing
e Input-Output Automata, e.g. A= (0, T::(0,(L, 0),0)setl),
@ @

(m ,a“out:1) (1n ,a“out:1)

(in, ao‘utl/’\(m ,a“,out:2) (in:, bV\(1ﬂ ,b“,out:1)

Note: I0-Determinism does NOT mean
that a system is “deterministic”
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Introduction to Sequence Testing

* Some notions of traditional sequence testing

 Conformance Relations assume that a model
(an Automata) is refined by
an implementation (assumed to be an automata)

SPEC C IMPL

* Well-known notions are:

« inclusion conformance[5]: all traces in SPEC must be possible in SUT,

« deadlock conformance[7]: for all traces t € Traces(SPEC) and
b € In(t), b must be refused by SUT, and

« input/output conformance (IOCO)[19]: for all traces t € Traces(SPEC)
and all t € In(t), the observed output of SUT must be in Out(t, 1).
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How to model and test
stateful systems ?
 Use Monads !!!
- The transition in an automaton (0,(L, 0),0)set

can isomorphically represented by:

L = 0 = (0,0) set

or for a deterministic transition function:

Il = 0 = (0,0) option

.. Which category theorists or functional programmers

would recognize as a Monad function space
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How to model and test
stateful systems ?
 Use Monads !!!
- The transition in an automaton (0,(1, 0),0)set

can isomorphically represented by:

L = (0 x 0) Mongge

or for a deterministic transition function:

L = (0 x 0) Mongge

.. which category theorists or functional programmers
would recognize as a Monad function space
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How to model and test
stateful systems ?

* Monads must have two combination operations bind and
unit enjoying three algebraic laws.

 For the concrete case of Mong.

definition binds; :: "('o,’c)MONg =0 =(0’,’c)MONgs) =(’0’, ' o)MONg"
where "bindsg £ g = (1o. case f gof None =None
| Some (out, o’) =g out o’)"
definition unitsz :: "0 =(C o0, '¢)MONg" ("(return _)" 8)
where "unitg e = (Qo. Some(e,o))"
e and write o-m;m'o for bindgz m (Ao. m'0)
and return for  unitge
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How to model and test
stateful systems ?

* Valid Test Sequences:

o> m O my e O om,
o, 0, 0

l L L
v v y

.. can be generated to code

+ .. can be symboli- Cuio_ mio=Non
cally executed (@ k(s = mem' 5) = False
Coto  muio=Some(b,d’)
(c EreturnP) = P (CEsemum s)= (0" « m' b))
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How to model and test

stateful systems ?
* Valid Test Sequences:

TEO —mL;...,0, « Myt return(P oy -+ 0,)

* .. Can be generated to code

* .. can be symbolically
executed ... Coio mic=None

(0 E (s = mu,m’ s))) = False

(siilr mto = Some(b,o’")

(o Eretum P) = P (cEse—mum s)= (0" « (m' b))
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Example : MyKeOS ?

 We consider an (brutal) abstraction of
an L4 Kernel IPC protocol called "MyKeOS”

e It has

e unbounded number of tasks
* .. having an unbounded number of threads
e ... which each have a counter for a resource

« .. the atomic actions alloc, release, status
(tagged by task-id, thread-id, arguments)

* release can only release allocated ressources
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Example : MyKeOS ?

State : (task_id x thread_id) — int

Input events:
inevent

| release task 1d t
| status task 1d

Output events:

Outevent

=alloc task 1d

nread

thread

1d

1d

System Model SYS: interprets input event

in a state and yields an output event and a successor
state if successful, an exception otherwise.
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hread 1d nat

nat

= alloc ok | release ok | status ok nat
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Example : MyKeOS (0)

0, F s+ mbind [ alloc tid 1 m",

release tid O m',
release tid 1 m"",

status tid 1] SYS;
unit(x = s)
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Example : MyKeOS (0)

0, = s+mbind [ alloc tid 1 m",

release tid O m',
release tid 1 m"",

status tid 1] SYS;
unit(x = s)
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Example : MyKeOS (1)

O"O — 00((tid, 1) -~ the (O'O (t|d, 1)) + int mll) —

o'y E stmbind [release tid 0 m,

release tid 1 m"',
status tid 1] SYS;
unit(x = alloc_ok # s)
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Example : MyKeOS (2)

O"O — GO((tid, 1) > the (O'O (t|d, 1)) + int mn) N

0y E st mbind [release tid 0 m’,

release tid 1 m"',
status tid 1] SYS;
unit(x = alloc_ok # s)
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Example : MyKeOS (2)

(tid, 1) e dom o, =

o'y = O,((tid, 1) » the (g, (tid, 1)) +intm") =

int m' < the ((o,((tid, 1)~ the(o,(tid,1))+int m"))(tid,0))=—
o', =0'((tid, 0) » the (o'(tid, 0)) - int m') =

0", E s¢tmbind [release tid 1 m",

status tid 1] SYS;
unit(x = alloc_ok # release_ok # s)
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Example : MyKeOS (3)

(tid, 1) e dom o, =

o'y = O,((tid, 1) » the (g, (tid, 1)) +intm") =
int m' < the ((g,((tid,1)~ the(ag,(tid,1))+int m"))(tid,0)) =
o', =0'((tid, 0) = the (o'(tid, 0)) - int m') =

o'y E se—mbind [release tic
status tid

unit(x = alloc_ok # re

1 mlll,

] SYS;
ease_ok # s)
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Example : MyKeOS (3)

(tid, 1) e dom o, =

o'y = O,((tid, 1) » the (g, (tid, 1)) +intm") =

int m' < the ((o,((tid, 1)~ the(g,(tid,1))+int m"))(tid,0)) =
o', =0'((tid, 0) = the (o'(tid, 0)) - int m') =

0"y F s+mbind [status tid 1] SYS;
unit(x = alloc_ok # release_ok # release_ok # s)
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Example : MyKeOS (4)

(tid, 1) e dom o, =

o'y = O,((tid, 1) » the (g, (tid, 1)) +intm") =

int m' < the ((o,((tid, 1)~ the(g,(tid,1))+int m"))(tid,0)) =
o', =0'((tid, 0) = the (o'(tid, 0)) - int m') =

0"y F s+ mbind [status tid 1] SYS;
unit(x = alloc_ok # release_ok # release_ok # s)
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Example : MyKeOS (5)

O"O — GO((tid, 1) > the (0‘0 (t|d, 1)) + int mn) N

int m' < the ((g,((tid,1)~ the(ag,(tid,1))+int m"))(tid,0)) =

o', =0'((tid, 0) = the (o'(tid, 0)) - int m') =

0"y E s+ mbind [] SYS;

unit(x = alloc_ok # release_ok # release_ok #
status_ok (the(o", (tid,1))) # s)

1.7.2015 Can Testing Be Liberated from the Automata Style ?

49



Example : MyKeOS (6)

O"O — 00((tid, 1) > the (O'O (t|d, 1)) + int mn) N

int m' < the ((g,((tid,1)~ the(ag,(tid,1))+int m"))(tid,0)) =

o', =0'((tid, 0) = the (o'(tid, 0)) - int m') =

0"y E s+mbind [] SYS;

unit(x = alloc_ok # release_ok # release_ok #
status_ok (the(o", (tid,1))) # s)
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Example : MyKeOS (6)

O"O — 00((tid, 1) > the (O'O (t|d, 1)) + int mn) N

int m' < the ((g,((tid,1)~ the(ag,(tid,1))+int m"))(tid,0)) =

o', =0'((tid, 0) = the (o'(tid, 0)) - int m') =

0", E unit(x = [alloc_ok, release_ok, release_ok,
status_ok (the(o", (tid,1)))])
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Example : MyKeOS (7)

O"O — GO((tid, 1) > the (0‘0 (t|d, 1)) + int mn) N

int m' < the ((g,((tid,1)~ the(ag,(tid,1))+int m"))(tid,0)) =

o', =0'((tid, 0) = the (o'(tid, 0)) - int m') =

X = [alloc_ok, release_ok, release_ok,
status_ok (the(o", (tid,1)))])
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How to model and test

stateful systems ?

* Test Refinements for a step-function SPEC and a
step function SUT:

* The premisse is reduced by symbolic
execution to constraints over res; a constraint
solver (Z3) produces an instance for res. The

conclusion is compiled to a test-driver/test-oracle
linked to SUT.
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Theory

e This motivates the notion of a
“Generalized Monadic Test-Refinement”

(SC

(20,CC,conf) I)
(Vo,e 2, VvV 1seCC.vVvres.

(0, = (0s —« mbind s S; return (conf s os res)))
_)

(0, E (0s — mbind s I; return (conf 1s os res))))
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Theory

e This motivates the notion of a
“Generalized Monadic Test-Refinement”

With conf set to:

- (A is os x. length is = length 0s A 0s=X)
==> Inclusion Test

— (A is 0s X. length is > length 0s A 0s=X)

==> Deadlock Refinement

— (N is os x. length is = length os A
post_cond (last 0S) A 0S=X)

==> IOCO Refinement (without quiescense)
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Theory

This motivates the notion of a
“Generalized Monadic Test-Refinement”

One can now PROVE equivalences between
different members of the test-refinement families

... and prove alternative forms for efficiency
optimizations of the generated test-driver code.
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Practice : How fo test concurrent programs ?

* Assumption: Code compiled for LINUX and
instrumented for debugging (gcc -d)

« Assumption: No dynamic thread creation (realistic
for our target OS); identifiable atomic actions in
the code;

* Assumption: Mapping from abstract atomic actions
in the model fto code-positions known.

* Abstract execution sequences were generated to
.gdb scripts forcing explicit thread-switches of the
SUT executed under gdb.
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Practice : How to test concurrent programs ?

thread IP4_send(tid_rec, thid_rec)
if (defined(tid_rec) &&
defined(thid_rec)) {

'gj'rab_lock();

atom: IPC_sendinit
release_lock();

if(curr_tid_hasRWin_tid_rec){

é'rab_lock();
atom: IPC_prep

release_lock();

¥
else{ return(ERROR_22);}

\ }else{ return(ERROR_35);}

thread IP4_receive(tid_snd, thid_snd){
if (defined(tid_snd) &&
defined(thid_snd)) {

é'rab_lock();

atom: IPC rec rdy
release_lock();

if(curr_tid_hasRin_tid_rec) {

'gi'rab_lock();

atom: IPC_wait
release_lock();

}

else{ return(ERROR_59);}
}
else{ return(ERROR_21);}
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Practice : How to test concurrent programs ?

thread IP4_send(tid_rec, thid_rec) thread |P4_recgive(tid_snd, thid_snd){
if (defined(tid_rec) && @ “switehriléd(tid_snd) &&
defined(thid_rec)) { defined(thid_snd)) {
. qrab_lock(): grab_lock():
“switch 27 o
4 atom: IPC_sendinit atom: IPC rec rdy
release_lock(); @ “switch 18iease_lock();
i.f(curr_tid_hasRWin_tid_rec){ if(curr_tid_hasRin_tid_rec) {
é'rab_lock(); 'gi'rab_lock();
atom: IPC prep _ atom: IPC_wait
release_lock(); [ “switch 1” release_lock();
¥ Y
else{ return(ERROR_22);} else{ return(ERROR_59);}
¥ }
else{ return(ERROR_35);} else{ return(ERROR_21);}

}
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Practice : How to test concurrent programs ?

thread IP4_send(tid_rec, thid_rec) thread |P4_recgive(tid_snd, thid_snd){
if (defined(tid_recy <8 SWiteRfidssktid snd) &&
c)){ defined(thfd_snd)) {

defined(thid_t

;'j'rab_loc ; é'rab ock();

® “switch 2

atgm: [IPC rec rdy

@ “switch 1€iegse_lock();
if(curi_tid_hasRin_tid_rec) {
B Q"rab_lock();

I atom: [PC wait

, “switch 1” J release_lock();

N | 1.
}else{ retulrn(ERROR_22);} }else{lreturn(ERROR_SQ);}
} }else{ return(ERI&OR_SS);} \ élse{ return(ERROR_21);}
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Practice : How to test concurrent programs ?

« Computing the input sequence as interleaving
of atomic actions of system-AP|-Calls:

[L4,...,1, Jeinterleaye (IPC_send t, th,)
(IPC_receive t, th-)

where !
a
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1.7.2015

Practice : How to -test concurrent programs ?

ok o « SUT; u;...;0, « SUT, t,;return(res = [01 - - - 04])
HOL-TestGen HOL-TestGen
Codegen gdb -gen

mlton+

. file : .gdb
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Conclusion

Monadic approach to sequence testing:
1. no surrender to finitism and constructivism

2. sensible shift from syntax to semantics:
computations + compositions, not nodes + arcs

3. explicit difference between input and outpuf,

4. theoretical and practical framework of
numerous conformance notions,

5. new ways to new calculi of symbolic evaluation
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Conclusion

Testing Bank : a protocol with 3 operations ..
1. Optimized split + prune essential.

2. Symbolic execution can be effectively
realised with e-matching.

3. 10° protocol-load IS FEASABLE in Isabelle ..

4. ... in a well-designed symbolic execution

process, the computation load is in the
normalization(but this can be highly parallelized)
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Conclusion

* HOL-TestGen is an Advanced Model-based
Testing Environment built on top of Isabelle/HOL

 Allows to establish a Link between a formal
System Model in Isabelle/HOL and

Real Code by (semi)-automated generation of
tests.

* Smooth Integration of Test and Proof !
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