Can Testing Be Liberated

From The Automata Style
222

Towards a Monadic Approach of
Symbolic Behavioral Test-Generation

Prof. Burkhart Wolff
Univ - Paris-Sud / LRI

1.7.2015 Can Testing Be Liberated from the Automata Style ? 1

Abstract

Sequence Testing is an important sub-domain of formal model-based Testing.
It addresses test scenarios where the tester controls the state of the System
Under Test (SUT) only at the initialization time and then indirectly via a
sequence of inputs. The latter may stimulate observable outputs on which the
test-verdict must be based solely.

A number of automata-based test-theories have been suggested that work
fairly well for traces of impressing length — provided that the state space of
the SUT is small. Whenever large state spaces have to be modeled — as is
the case for operating systems, data-bases or web-services — both theory and
implementations resists obstinately practical applicability: Theoretically,
because symbolic representations of state spaces have to be treated;
Practically, because these difficulties result in a small number of tools
addressing sparse and fairly limited application domains.

In this talk, | will present a novel approach to the problem based on Monads,
their theory developed in Isabelle/HOL. Notions like Test-Sequence and Test-
Refinement can be rephrased in terms of Monads, which opens the way both
for efficient symbolic execution of system models as well as the efficient
compilation to test-drivers. Theoretically, the monadic approach allows to

1.) resists the tendency to surrender to finitism and constructivism at the first-
best opportunity

2.) provides a sensible shift from syntax to semantics: instead of a first-order,
intentional view in nodes and events in automata, the heart of the calculus is
on computations and their compositions

Overview

HOL-TestGen and its Business-Case

The Standard Workflow for Unit Testing

- Demo

+ The Workflow for Sequence Tests

HOL-TestGen and
Its Business-Case

e HOL-TestGen is somewhat unusual test-Tool:

« implemented as "PlugIn”in a major Interactive
Theorem Proving Environment : Isabelle/HOL

e conceived as formal testcase-generation method based on
symbolic execution of a model (in HOL)

* Favors Expressivity and emphasizes Test-Plans
as formal entities; emphasis on Interactivity

* Document-centric test-development
(inspired by SPECEXPLORER)

1.7.2015 Can Testing Be Liberated from the Automata Style ?

HOL-TestGen as Plugin
in the Isabelle Architecture

e
o I

ML running on multi-core arch

Cl | C2 C3 | C4

1.7.2015 Can Testing Be Liberated from the Automata Style ? 5

HOL-TestGen as Plugin
in the Isabelle Architecture

Advantage: _\.
_ Scala System Interface
e Reuse of powerful
components in “ .
unique, interactive
integrated
e secamless integration
of test and proof
activities

environment

ML running on multi-core arch

Cl | C2 C3 | C4

1.7.2015 Can Testing Be Liberated from the Automata Style ? 6

HOL-TestGen Workflow

* Modelisation
e writing background theory of problem domain

Black-Box Testing:

"The Standard Workflow”
* Writing a test-theory (the “model”)

1.7.2015 Can Testing Be Liberated from the Automata Style ?

Black-Box Testing:

“"The Standard Workflow”
* Writing a ftest-theory (the “"model”)

Example: Sorting in HOL

primrec is_sorted ::"int list = bool”
where “is_sorted [] = True”
| “is_sorted (x#xs) =
case xs of
[] = True
| (y#ys) = (x<y) A is_sorted ys”

1.7.2015 Can Testing Be Liberated from the Automata Style ?

Black-Box Testing:

“"The Standard Workflow”
* Writing a ftest-theory (the “"model”)

Example: Sorting in HOL

primrec is_sorted ::"int list = bool”
where “is_sorted [] = True”
| “is_sorted (x#xs) =
case xs of
[] = True
| (y#ys) = (x<y) A is_sorted ys”

1.7.2015 Can Testing Be Liberated from the Automata Style ?

10

Black-Box Testing:

"The Standard Workflow”
* Writing a fest-theory

* Writing a fest-specification TS

1.7.2015 Can Testing Be Liberated from the Automata Style ?

11

Black-Box Testing:

"The Standard Workflow”
* Writing a fest-theory

* Writing a fest-specification TS

testspec “ is_sorted(PUT x)
A asc(x, PUT x)”

1.7.2015 Can Testing Be Liberated from the Automata Style ?

12

Black-Box Testing:

"The Standard Workflow”
* Writing a fest-theory

* Writing a fest-specification TS

pattern:

testspec “pre x — post x (PUTx)"

1.7.2015 Can Testing Be Liberated from the Automata Style ?

13

Black-Box Testing:

"The Standard Workflow”
®* Writing a test-theory

®* Writing a test-specification TS
example:

test spec “is_sorted x — is_sorted (PUT a x)”
or
test spec “is_sorted (PUT [)’

1.7.2015 Can Testing Be Liberated from the Automata Style ?

14

Black-Box Testing:

"The Standard Workflow”
®* Writing a test-theory

®* Writing a test-specification TS

® Conversion into test-theorem
("Testcase Generation”)

1.7.2015 Can Testing Be Liberated from the Automata Style ?

15

Black-Box Testing:

"The Standard Workflow”
®* Writing a test-theory

®* Writing a test-specification TS

®* Conversion into test-theorem

("Testcase Generation”)

apply(gen_test cases 3 1 “PUT")

1.7.2015 Can Testing Be Liberated from the Automata Style ?

16

Black-Box Testing:

"The Standard Workflow”
* Writing a test-theory

* Writing a test-specification TS

®* Conversion into test-theorem

("Testcase Generation”)
1€, = ...= TC = THYP(H)=...= THYP(H) = TS

where testcases TCi have the form

Constraint (X) = . . . = Constraint (X) = P(prog x)

and where THYP(H) are test-hypothesis

1.7.2015 Can Testing Be Liberated from the Automata Style ? 17

Black-Box Testing:

"The Standard Workflow”
®* Writing a test-theory

®* Writing a test-specification TS

®* Conversion into test-theorem

Example:

Is_sorted (PUTI)
1:is_sorted(PUT [])
2:is_sorted(PUT [?X])
3: THYP(3 x. is_sorted(PUT [x]) =V x. is_sorted(PUT [x]))
4:is_sorted(PUT [?X, ?Y])

1.7.2015 Can Testing Be Liberated from the Automata Style ?

18

Black-Box Testing:

"The Standard Workflow”
* Writing a test-theory

®* Writing a test-specification TS

® Conversion into test-theorem

5. THYP(3 x y. is_sorted(PUT[x,y]) —
v X y. is_sorted(PUT[x,y]))
6: is_sorted(PUT [?X, ?Y, ?X])
/. THYP(3 xyz. is_sorted(PUT [x,y,z]) —
v Xy z.is_sorted(PUT [x,y,z]))
17.20158; THYP(3 < |l| e istingrrtied(Pd bt)jutomata Style 2

19

Black-Box Testing:

"The Standard Workflow”
Writing a test-theory

Writing a test-specification TS

Conversion into fest-theorem

Generation of test-data

1.7.2015 Can Testing Be Liberated from the Automata Style ?

20

Black-Box Testing:

"The Standard Workflow”
Writing a test-theory

Writing a test-specification TS

Conversion into fest-theorem

Generation of test-data

gen test data“..."

1.7.2015 Can Testing Be Liberated from the Automata Style ?

21

Black-Box Testing:

"The Standard Workflow”
Writing a test-theory

Writing a test-specification TS

Conversion into fest-theorem

Generation of test-data

is_sorted(PUT 1])
Is_sorted(PUT 1 [0])
Is_sorted(PUT 1 [2])
Is_sorted(PUT 1 [1,2])

1.7.2015 Can Testing Be Liberated from the Automata Style ?

Black-Box Testing:

"The Standard Workflow”
Writing a test-theory

Writing a test-specification TS

Conversion into fest-theorem

Generation of test-data

Generating a test-harness

1.7.2015 Can Testing Be Liberated from the Automata Style ?

23

Black-Box Testing:

"The Standard Workflow”
Writing a test-theory

Writing a test-specification TS

Conversion into fest-theorem
Generation of test-data
Generating a test-harness

Run of testharness and
generation of test-document

1.7.2015 Can Testing Be Liberated from the Automata Style ?

24

Midi Example: Red Black Trees
Red-Black-Trees: Test Specification

testspec :
(redinv t A
blackinv t)

—

(redinv (delete x t) A
blackinv (delete x t))

where delete is the program under fest.

HOL-TestGen Workflow

Demo

Introduction to Sequence Testing

®* HOL is a state-less language;

how to model and test stateful systems ?

®* How to test systems where you have only
control over the initial state ?

®* How fo test concurrent programs
implementing a model ?

1.7.2015 Can Testing Be Liberated from the Automata Style ?

27

Introduction to Sequence Testing

Testability Hypothesis in Sequence Testing

1. The tester can reset the system under test (the SUT)
into a known initial state,

2. the tester can stimulate the SUT only via the operation-
calls and input of a known interface; while the internal
state of the SUT is hidden fo the tester, the SUT is
assumed to be only controlled by these stimuli, and

3. the SUT behaves deterministic with respect to an
observed sequence of input-output pairs (it is input-output
deterministic).

1.7.2015 Can Testing Be Liberated from the Automata Style ?

28

Introduction to Sequence Testing

* Some notions of traditional sequence testing

- Input-Output Automata, e.g. A = (0, T::(0 x (1x0) x O)set),

0 is the type of states

e | the type of inputs (input events)

0 the type of outputs (output events)
T the set of input-output-transitions.

1.7.2015 Can Testing Be Liberated from the Automata Style ?

29

Introduction to Sequence Testing

* Some notions of fraditional sequence testing
e Inpuf-Output Automata, e.g. A= (0, T::(0,(L, 0),0)set),
@ @

(1n ,a“out:1) (1n ,a“out:1)

(in:,,a“,out: 1y‘ ~(in:,,a“,out:2) (in:, bo;tl)’\(m ,b“,out:1)

1.7.2015 Can Testing Be Liberated from the Automata Style ?

30

Introduction to Sequence Testing

* Some notions of traditional sequence testing
e Inpuf-Output Automata, e.g. A= (0, T::(0,(L, 0),0)set),
@ @

(m ,a“out:1) (1n ,a“out:1)

(in:,,a“,out: 1y< ~(in:,,a%,0ut:2) (in:, bg%l)}j\(m ,b“,out:1)

“ ” “ ”

« teTrace(A) :: (1, 0)set (eg. [(“a

» set of enabled inputs after a trace:

In\(t) (eg. Iny([("a",1)]) ={"a"})

« set of possible outputs after trace and input:
Outa(ti) (eg. Outy([(*a”,1)]) =(1,2})

1.7.2015 Can Testing Be Liberated from the Automata Style ? 31

Introduction to Sequence Testing

* Some notions of traditional sequence testing
e Input-Output Automata, e.g. A= (0, T::(0,(L, 0),0)setl),
@ @

(m ,a“out:1) (1n ,a“out:1)

(in, ao‘utl/’\(m ,a“,out:2) (in:, bV\(1ﬂ ,b“,out:1)

Note: I0-Determinism does NOT mean
that a system is “deterministic”

1.7.2015 Can Testing Be Liberated from the Automata Style ? 32

Introduction to Sequence Testing

* Some notions of traditional sequence testing

 Conformance Relations assume that a model
(an Automata) is refined by
an implementation (assumed to be an automata)

SPEC C IMPL

* Well-known notions are:

« inclusion conformance[5]: all traces in SPEC must be possible in SUT,

« deadlock conformance[7]: for all traces t € Traces(SPEC) and
b € In(t), b must be refused by SUT, and

« input/output conformance (IOCO)[19]: for all traces t € Traces(SPEC)
and all t € In(t), the observed output of SUT must be in Out(t, 1).

1.7.2015 Can Testing Be Liberated from the Automata Style ? 33

How to model and test
stateful systems ?
 Use Monads !!!
- The transition in an automaton (0,(L, 0),0)set

can isomorphically represented by:

L = 0 = (0,0) set

or for a deterministic transition function:

Il = 0 = (0,0) option

.. Which category theorists or functional programmers

would recognize as a Monad function space

1.7.2015 Can Testing Be Liberated from the Automata Style ? 34

How to model and test
stateful systems ?
 Use Monads !!!
- The transition in an automaton (0,(1, 0),0)set

can isomorphically represented by:

L = (0 x 0) Mongge

or for a deterministic transition function:

L = (0 x 0) Mongge

.. which category theorists or functional programmers
would recognize as a Monad function space

1.7.2015 Can Testing Be Liberated from the Automata Style ? 35

How to model and test
stateful systems ?

* Monads must have two combination operations bind and
unit enjoying three algebraic laws.

 For the concrete case of Mong.

definition binds; :: "('o,’c)MONg =0 =(0’,’c)MONgs) =(’0’, ' o)MONg"
where "bindsg £ g = (1o. case f gof None =None
| Some (out, o’) =g out o’)"
definition unitsz :: "0 =(C o0, '¢)MONg" ("(return _)" 8)
where "unitg e = (Qo. Some(e,o))"
e and write o-m;m'o for bindgz m (Ao. m'0)
and return for unitge

1.7.2015 Can Testing Be Liberated from the Automata Style ? 36

How to model and test
stateful systems ?

* Valid Test Sequences:

o> m O my e O om,
o, 0, 0

l L L
v v y

.. can be generated to code

+ .. can be symboli- Cuio_ mio=Non
cally executed (@ k(s = mem' 5) = False
Coto muio=Some(b,d’)
(c EreturnP) = P (CEsemum s)= (0" « m' b))
1.7.2015 Can Testing Be Liberated from the Automata Style ? 37

How to model and test

stateful systems ?
* Valid Test Sequences:

TEO —mL;...,0, « Myt return(P oy -+ 0,)

* .. Can be generated to code

* .. can be symbolically
executed ... Coio mic=None

(0 E (s = mu,m’ s))) = False

(siilr mto = Some(b,o’")

(o Eretum P) = P (cEse—mum s)= (0" « (m' b))

1.7.2015 Can Testing Be Liberated from the Automata Style ?

38

Example : MyKeOS ?

 We consider an (brutal) abstraction of
an L4 Kernel IPC protocol called "MyKeOS”

e It has

e unbounded number of tasks
* .. having an unbounded number of threads
e ... which each have a counter for a resource

« .. the atomic actions alloc, release, status
(tagged by task-id, thread-id, arguments)

* release can only release allocated ressources

1.7.2015 Can Testing Be Liberated from the Automata Style ? 39

Example : MyKeOS ?

State : (task_id x thread_id) — int

Input events:
inevent

| release task 1d t
| status task 1d

Output events:

Outevent

=alloc task 1d

nread

thread

1d

1d

System Model SYS: interprets input event

in a state and yields an output event and a successor
state if successful, an exception otherwise.

1.7.2015 Can Testing Be Liberated from the Automata Style ?

hread 1d nat

nat

= alloc ok | release ok | status ok nat

40

Example : MyKeOS (0)

0, F s+ mbind [alloc tid 1 m",

release tid O m',
release tid 1 m"",

status tid 1] SYS;
unit(x = s)

1.7.2015 Can Testing Be Liberated from the Automata Style ?

41

Example : MyKeOS (0)

0, = s+mbind [alloc tid 1 m",

release tid O m',
release tid 1 m"",

status tid 1] SYS;
unit(x = s)

1.7.2015 Can Testing Be Liberated from the Automata Style ?

42

Example : MyKeOS (1)

O"O — 00((tid, 1) -~ the (O'O (t|d, 1)) + int mll) —

o'y E stmbind [release tid 0 m,

release tid 1 m"',
status tid 1] SYS;
unit(x = alloc_ok # s)

1.7.2015 Can Testing Be Liberated from the Automata Style ?

43

Example : MyKeOS (2)

O"O — GO((tid, 1) > the (O'O (t|d, 1)) + int mn) N

0y E st mbind [release tid 0 m’,

release tid 1 m"',
status tid 1] SYS;
unit(x = alloc_ok # s)

1.7.2015 Can Testing Be Liberated from the Automata Style ?

44

Example : MyKeOS (2)

(tid, 1) e dom o, =

o'y = O,((tid, 1) » the (g, (tid, 1)) +intm") =

int m' < the ((o,((tid, 1)~ the(o,(tid,1))+int m"))(tid,0))=—
o', =0'((tid, 0) » the (o'(tid, 0)) - int m') =

0", E s¢tmbind [release tid 1 m",

status tid 1] SYS;
unit(x = alloc_ok # release_ok # s)

1.7.2015 Can Testing Be Liberated from the Automata Style ?

45

Example : MyKeOS (3)

(tid, 1) e dom o, =

o'y = O,((tid, 1) » the (g, (tid, 1)) +intm") =
int m' < the ((g,((tid,1)~ the(ag,(tid,1))+int m"))(tid,0)) =
o', =0'((tid, 0) = the (o'(tid, 0)) - int m') =

o'y E se—mbind [release tic
status tid

unit(x = alloc_ok # re

1 mlll,

] SYS;
ease_ok # s)

1.7.2015 Can Testing Be Liberated from the Automata Style ?

46

Example : MyKeOS (3)

(tid, 1) e dom o, =

o'y = O,((tid, 1) » the (g, (tid, 1)) +intm") =

int m' < the ((o,((tid, 1)~ the(g,(tid,1))+int m"))(tid,0)) =
o', =0'((tid, 0) = the (o'(tid, 0)) - int m') =

0"y F s+mbind [status tid 1] SYS;
unit(x = alloc_ok # release_ok # release_ok # s)

1.7.2015 Can Testing Be Liberated from the Automata Style ? 47

Example : MyKeOS (4)

(tid, 1) e dom o, =

o'y = O,((tid, 1) » the (g, (tid, 1)) +intm") =

int m' < the ((o,((tid, 1)~ the(g,(tid,1))+int m"))(tid,0)) =
o', =0'((tid, 0) = the (o'(tid, 0)) - int m') =

0"y F s+ mbind [status tid 1] SYS;
unit(x = alloc_ok # release_ok # release_ok # s)

1.7.2015 Can Testing Be Liberated from the Automata Style ? 48

Example : MyKeOS (5)

O"O — GO((tid, 1) > the (0‘0 (t|d, 1)) + int mn) N

int m' < the ((g,((tid,1)~ the(ag,(tid,1))+int m"))(tid,0)) =

o', =0'((tid, 0) = the (o'(tid, 0)) - int m') =

0"y E s+ mbind [] SYS;

unit(x = alloc_ok # release_ok # release_ok #
status_ok (the(o", (tid,1))) # s)

1.7.2015 Can Testing Be Liberated from the Automata Style ?

49

Example : MyKeOS (6)

O"O — 00((tid, 1) > the (O'O (t|d, 1)) + int mn) N

int m' < the ((g,((tid,1)~ the(ag,(tid,1))+int m"))(tid,0)) =

o', =0'((tid, 0) = the (o'(tid, 0)) - int m') =

0"y E s+mbind [] SYS;

unit(x = alloc_ok # release_ok # release_ok #
status_ok (the(o", (tid,1))) # s)

1.7.2015 Can Testing Be Liberated from the Automata Style ?

50

Example : MyKeOS (6)

O"O — 00((tid, 1) > the (O'O (t|d, 1)) + int mn) N

int m' < the ((g,((tid,1)~ the(ag,(tid,1))+int m"))(tid,0)) =

o', =0'((tid, 0) = the (o'(tid, 0)) - int m') =

0", E unit(x = [alloc_ok, release_ok, release_ok,
status_ok (the(o", (tid,1)))])

1.7.2015 Can Testing Be Liberated from the Automata Style ?

51

Example : MyKeOS (7)

O"O — GO((tid, 1) > the (0‘0 (t|d, 1)) + int mn) N

int m' < the ((g,((tid,1)~ the(ag,(tid,1))+int m"))(tid,0)) =

o', =0'((tid, 0) = the (o'(tid, 0)) - int m') =

X = [alloc_ok, release_ok, release_ok,
status_ok (the(o", (tid,1)))])

1.7.2015 Can Testing Be Liberated from the Automata Style ?

52

How to model and test

stateful systems ?

* Test Refinements for a step-function SPEC and a
step function SUT:

* The premisse is reduced by symbolic
execution to constraints over res; a constraint
solver (Z3) produces an instance for res. The

conclusion is compiled to a test-driver/test-oracle
linked to SUT.

1.7.2015 Can Testing Be Liberated from the Automata Style ?

Theory

e This motivates the notion of a
“Generalized Monadic Test-Refinement”

(SC

(20,CC,conf) I)
(Vo,e 2, VvV 1seCC.vVvres.

(0, = (0s —« mbind s S; return (conf s os res)))
_)

(0, E (0s — mbind s I; return (conf 1s os res))))

1.7.2015 Can Testing Be Liberated from the Automata Style ? 54

Theory

e This motivates the notion of a
“Generalized Monadic Test-Refinement”

With conf set to:

- (A is os x. length is = length 0s A 0s=X)
==> Inclusion Test

— (A is 0s X. length is > length 0s A 0s=X)

==> Deadlock Refinement

— (N is os x. length is = length os A
post_cond (last 0S) A 0S=X)

==> IOCO Refinement (without quiescense)

1.7.2015 Can Testing Be Liberated from the Automata Style ? 55

Theory

This motivates the notion of a
“Generalized Monadic Test-Refinement”

One can now PROVE equivalences between
different members of the test-refinement families

... and prove alternative forms for efficiency
optimizations of the generated test-driver code.

1.7.2015 Can Testing Be Liberated from the Automata Style ?

56

Practice : How fo test concurrent programs ?

* Assumption: Code compiled for LINUX and
instrumented for debugging (gcc -d)

« Assumption: No dynamic thread creation (realistic
for our target OS); identifiable atomic actions in
the code;

* Assumption: Mapping from abstract atomic actions
in the model fto code-positions known.

* Abstract execution sequences were generated to
.gdb scripts forcing explicit thread-switches of the
SUT executed under gdb.

1.7.2015 Can Testing Be Liberated from the Automata Style ?

57

Practice : How to test concurrent programs ?

thread IP4_send(tid_rec, thid_rec)
if (defined(tid_rec) &&
defined(thid_rec)) {

'gj'rab_lock();

atom: IPC_sendinit
release_lock();

if(curr_tid_hasRWin_tid_rec){

é'rab_lock();
atom: IPC_prep

release_lock();

¥
else{ return(ERROR_22);}

\ }else{ return(ERROR_35);}

thread IP4_receive(tid_snd, thid_snd){
if (defined(tid_snd) &&
defined(thid_snd)) {

é'rab_lock();

atom: IPC rec rdy
release_lock();

if(curr_tid_hasRin_tid_rec) {

'gi'rab_lock();

atom: IPC_wait
release_lock();

}

else{ return(ERROR_59);}
}
else{ return(ERROR_21);}

1.7.2015 Can Testing Be Liberated from the Automata Style ? 58

Practice : How to test concurrent programs ?

thread IP4_send(tid_rec, thid_rec) thread |P4_recgive(tid_snd, thid_snd){
if (defined(tid_rec) && @ “switehriléd(tid_snd) &&
defined(thid_rec)) { defined(thid_snd)) {
. qrab_lock(): grab_lock():
“switch 27 o
4 atom: IPC_sendinit atom: IPC rec rdy
release_lock(); @ “switch 18iease_lock();
i.f(curr_tid_hasRWin_tid_rec){ if(curr_tid_hasRin_tid_rec) {
é'rab_lock(); 'gi'rab_lock();
atom: IPC prep _ atom: IPC_wait
release_lock(); [“switch 1” release_lock();
¥ Y
else{ return(ERROR_22);} else{ return(ERROR_59);}
¥ }
else{ return(ERROR_35);} else{ return(ERROR_21);}

}

1.7.2015 Can Testing Be Liberated from the Automata Style ? 59

Practice : How to test concurrent programs ?

thread IP4_send(tid_rec, thid_rec) thread |P4_recgive(tid_snd, thid_snd){
if (defined(tid_recy <8 SWiteRfidssktid snd) &&
c)){ defined(thfd_snd)) {

defined(thid_t

;'j'rab_loc ; é'rab ock();

® “switch 2

atgm: [IPC rec rdy

@ “switch 1€iegse_lock();
if(curi_tid_hasRin_tid_rec) {
B Q"rab_lock();

I atom: [PC wait

, “switch 1” J release_lock();

N | 1.
}else{ retulrn(ERROR_22);} }else{lreturn(ERROR_SQ);}
} }else{ return(ERI&OR_SS);} \ élse{ return(ERROR_21);}

1.7.2015 Can Testing Be Liberated from the Automata Style ? 60

Practice : How to test concurrent programs ?

« Computing the input sequence as interleaving
of atomic actions of system-AP|-Calls:

[L4,...,1, Jeinterleaye (IPC_send t, th,)
(IPC_receive t, th-)

where !
a

1.7.2015 Can Testing Be Liberated from the Automata Style ? 61

1.7.2015

Practice : How to -test concurrent programs ?

ok o « SUT; u;...;0, « SUT, t,;return(res = [01 - - - 04])
HOL-TestGen HOL-TestGen
Codegen gdb -gen

mlton+

. file : .gdb

62

Conclusion

Monadic approach to sequence testing:
1. no surrender to finitism and constructivism

2. sensible shift from syntax to semantics:
computations + compositions, not nodes + arcs

3. explicit difference between input and outpuf,

4. theoretical and practical framework of
numerous conformance notions,

5. new ways to new calculi of symbolic evaluation

1.7.2015 Can Testing Be Liberated from the Automata Style ? 63

Conclusion

Testing Bank : a protocol with 3 operations ..
1. Optimized split + prune essential.

2. Symbolic execution can be effectively
realised with e-matching.

3. 10° protocol-load IS FEASABLE in Isabelle ..

4. ... in a well-designed symbolic execution

process, the computation load is in the
normalization(but this can be highly parallelized)

1.7.2015 Can Testing Be Liberated from the Automata Style ? 64

Conclusion

* HOL-TestGen is an Advanced Model-based
Testing Environment built on top of Isabelle/HOL

 Allows to establish a Link between a formal
System Model in Isabelle/HOL and

Real Code by (semi)-automated generation of
tests.

* Smooth Integration of Test and Proof !

1.7.2015 Can Testing Be Liberated from the Automata Style ? 65

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

