|
Ph.D de |
|
|
Ph.D
Group : Human-Centered Computing
Objets passifs pour une entrée multi-points riche
Starts on 01/10/2014
Advisor : PIETRIGA, Emmanuel
Funding : contrat doctoral UPS
Affiliation : Université Paris-Saclay
Laboratory : LRI - HCC
Defended on 09/10/2017, committee :
Directeur de thèse :
M. Emmanuel PIETRIGA Université Paris-Sud
Rapporteurs :
M. Laurent GRISONI POLYTECH'LILLE et UNIVERSITÉ DE LILLE SCIENCES & TECHNOLOGIES
M. Stéphane CONVERSY ENAC-LII et Université de Toulouse
Examinateurs :
Mme Caroline APPERT Université Paris-Sud
M. Gilles BAILLY Université Pierre et Marie Curie
M. Stéphane HUOT Inria Lille-Nord Europe
Mme Yvonne JANSEN Université Pierre et Marie Curie
Président :
Mme Chantal REYNAUD Université Paris-Sud
Research activities :
Abstract :
This thesis investigates a novel input technique for enriching the gesture vocabulary on a multi-touch surface based on fingers' relative location and passive tokens. The first project, TouchTokens, presents a novel technique for interacting with multi-touch surfaces and tokens. The originality is that these tokens are totally passive (no need for any additional electronic components) and their design features notches that guide users' grasp. The purpose of the notches is to indicate a finger spatial configuration (touch pattern) that is specific to the token. When users hold a token and place it on the surface, touching them simultaneously, the system can recognize the resulting touch patterns with a very high level of accuracy (>95%). This approach works on any touch-sensitive surface and makes it possible to easily build low-cost interfaces that combine no-conductive tangibles and gestural input. This technique supports a new multi-touch input that the system can recognize. However, the interaction is limited to the two-state model of touch interaction as the system only knows the tokens' position and cannot detect tokens that are not touched. In the second project of the thesis, we introduce a laser-cut lattice hinge technique for making the tokens flexible. We then develop a new recognizer that analyzes the micro-movements of the fingers while user are holding and deforming those tokens on the surface. We run three experiments to design and calibrate algorithms for discriminating the three following types of manipulations: (1) when a token is left on the surface rather than taken off it (On/Off); (2) when a token has been bent, and (3) when it is squeezed. Our results show that our algorithms can recognize these three manipulations with an accuracy of: On/Off 90.1%, Bent 91.1% and Squeezed 96,9%. The thesis concludes with the presentation of two tools, TouchTokenBuilder and TouchTokenTracker, for facilitating the development of tailor-made tangibles using a simple direct-manipulation interface. TouchTokenBuilder is a software application that assists interface designers in placing notches on arbitrarily-shaped vector contours for creating conflict-free token sets and warning them about potential conflicts. It outputs two files: a vector-graphics description of all tokens in the set and a numerical description of the geometry of each token. TouchTokenTracker is a software library that takes as input the numerical description produced by TouchTokenBuilder, and enables developers to track the tokens' full geometry (location, orientation and shape) throughout their manipulation on the multi-touch surface.
|
|
|
|
Ph.D. dissertations & Faculty habilitations |
|
|
CAUSAL LEARNING FOR DIAGNOSTIC SUPPORTCAUSAL UNCERTAINTY QUANTIFICATION UNDER PARTIAL KNOWLEDGE AND LOW DATA REGIMESMICRO VISUALIZATIONS: DESIGN AND ANALYSIS OF VISUALIZATIONS FOR SMALL DISPLAY SPACESThe topic of this habilitation is the study of very small data visualizations, micro visualizations, in display contexts that can only dedicate minimal rendering space for data representations. For several years, together with my collaborators, I have been studying human perception, interaction, and analysis with micro visualizations in multiple contexts. In this document I bring together three of my research streams related to micro visualizations: data glyphs, where my joint research focused on studying the perception of small-multiple micro visualizations, word-scale visualizations, where my joint research focused on small visualizations embedded in text-documents, and small mobile data visualizations for smartwatches or fitness trackers. I consider these types of small visualizations together under the umbrella term ``micro visualizations.'' Micro visualizations are useful in multiple visualization contexts and I have been working towards a better understanding of the complexities involved in designing and using micro visualizations. Here, I define the term micro visualization, summarize my own and other past research and design guidelines and outline several design spaces for different types of micro visualizations based on some of the work I was involved in since my PhD.
|
|
|
|
|