Français Anglais
Accueil Annuaire Plan du site
Home > Research results > Research highlights
Research results
Research highlight : TESTING FOR REFINEMENT IN CIRCUS
TESTING FOR REFINEMENT IN CIRCUS
21 March 2011

Ana Cavalcanti and Marie-Claude Gaudel, ACTA INFORMATICA
Volume 48, Number 2, 97-147, DOI: 10.1007/s00236-011-0133-z
Circus combines constructs to define complex data operations and interactions; it integrates Z and CSP, and, distinctively, it is a language for refinement that can describe programs as well as specification and design models. The semantics is based on the unifying theories of programming (UTP). Most importantly, Circus is representative of a class of refinement-oriented languages that combines facilities to specify abstract data types in a model-based style and patterns of interaction. What we present here is the Circus testing theory; this work is relevant as a foundation for sound test-generation techniques for a plethora of state-rich reactive languages. To cater for data operations, we define symbolic tests and exhaustive test sets. They are the basis for test-generation techniques that can combine coverage criteria for data and transition models. The notion of correctness is Circus refinement, a UTP-based generalisation of failures-divergences refinement that considers data modelling. Proof of exhaustivity exploits the correspondence between the operational and denotational semantics.



Keyword
  ° Formal Model-Based Testing

Group
  ° Verification of Algorithms, Languages and Systems

Contact
  [none]
Research highlights
HOW FAST CAN YOU CONVERGE TOWARDS A CONSENSUS VALUE?
28 October 2021
In their recent work, Matthias Fuegger (LMF), Thomas Nowak (LISN), and Manfred Schwarz (TU Wien) stu

MODEL TRANSFORMATION AS CONSERVATIVE THEORY-TRANSFORMATION
30 October 2020
We present a new technique to construct tool support for domain-specific languages (DSLs) inside the

BEST STUDENT PAPER AWARD (ML) AT ECML 2019
20 September 2019
Guillaume Doquet (A&O) received the Best Student Paper Award (category Machine Learning) at ECML 201

BEST PAPER AWARD - HPCS 2019 - ON SERVER-SIDE FILE ACCESS PATTERN MATCHING
17 July 2019
Francieli Zanon Boito¹ , Ramon Nou², Laércio Lima Pilla³, Jean Luca Bez⁴, Jean-François Méhaut¹, T

BEST FULL PAPER AWARD EDM 2019 - EDUCATIONAL DATA MINING
5 July 2019
DAS3H: Modeling Student Learning and Forgetting for Optimally Scheduling Distributed Practice of Ski