Français Anglais
Accueil Annuaire Plan du site
Accueil > Production scientifique > Résultat majeur
Production scientifique
Résultat majeur : OPTIMIZING XML QUERYING USING TYPE-BASED DOCUMENT PROJECTION ARTICLE@ACM TRANSACTIONS ON DATABASE SYSTEMS (TODS) V. BENZAKEN, G. CASTAGNA, D. COLAZZO, K. NGUYễN
OPTIMIZING XML QUERYING USING TYPE-BASED DOCUMENT PROJECTION ARTICLE@ACM TRANSACTIONS ON DATABASE SYSTEMS (TODS) V. BENZAKEN, G. CASTAGNA, D. COLAZZO, K. NGUYễN
14 octobre 2012

XML data projection (or pruning) is a natural optimization for main memory query engines: given a query Q over a document D, the subtrees of D that are not necessary to evaluate Q are pruned, thus producing a smaller document on which Q is executed.
In this article, we propose a new approach, based on types, that greatly improves current solutions. Besides providing comparable or greater precision and far lesser pruning overhead, our solution ---unlike current approaches--- takes into account backward axes, predicates, and can be applied to multiple queries rather than just to single ones. A side contribution is a new type system for XPath able to handle backward axes. The soundness of our approach is formally proved. Furthermore, we prove that the approach is also complete (i.e., yields the best possible type-driven pruning) for a relevant class of queries and Schemas. We further validate our approach using the XMark and XPathMark benchmarks and show that pruning not only improves the main memory query engine's performances (as expected) but also those of state of the art native XML databases.



Activités de recherche
  ° XML
  ° Langages et systèmes centrés données
  ° Analyse Statique
  ° Langages de requêtes
  ° Optimisation de requêtes

Equipe
  ° Bases de Données
  ° Toccata

Contact
  ° NGUYEN Kim
Résultats majeurs
HOW FAST CAN YOU CONVERGE TOWARDS A CONSENSUS VALUE?
28 octobre 2021
In their recent work, Matthias Fuegger (LMF), Thomas Nowak (LISN), and Manfred Schwarz (TU Wien) stu

MODEL TRANSFORMATION AS CONSERVATIVE THEORY-TRANSFORMATION
30 octobre 2020
We present a new technique to construct tool support for domain-specific languages (DSLs) inside the

BEST STUDENT PAPER AWARD (ML) AT ECML 2019
20 septembre 2019
Guillaume Doquet (A&O), Best Student Paper Award (category Machine Learning) at ECML 2019.

BEST PAPER AWARD - HPCS 2019 - ON SERVER-SIDE FILE ACCESS PATTERN MATCHING
17 juillet 2019
Francieli Zanon Boito¹ , Ramon Nou², Laércio Lima Pilla³, Jean Luca Bez⁴, Jean-François Méhaut¹, T

BEST FULL PAPER AWARD EDM 2019 - EDUCATIONAL DATA MINING
05 juillet 2019
DAS3H: Modeling Student Learning and Forgetting for Optimally Scheduling Distributed Practice of Ski